Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs a...Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.展开更多
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
The manipulation of structured light beams requires simultaneous spatial modulation of amplitude and phase.Based on the double-phase holography(DPH)algorithm,we demonstrate an efficient reconstruction of Bessel beams ...The manipulation of structured light beams requires simultaneous spatial modulation of amplitude and phase.Based on the double-phase holography(DPH)algorithm,we demonstrate an efficient reconstruction of Bessel beams with arbitrary onaxis intensity.Also,the off-axis DPH method enables more than doubled laser energy utilization compared with the widelyused off-axis phase wrapping modulation method.The DPH algorithm is also used in two-photon polymerization to enable the rapid fabrication of microtube arrays,ortho-hexagonal scaffolds,and 2D patterned microstructures.This work gives experimental proof to show the powerful feasibility of the DPH method in constructing economic adaptive laser processing systems.展开更多
Spatial patterns are a significant characteristic of lasers.The knowledge of spatial patterns of structured laser beams is rapidly expanding,along with the progress of studies on laser physics and technology.Particula...Spatial patterns are a significant characteristic of lasers.The knowledge of spatial patterns of structured laser beams is rapidly expanding,along with the progress of studies on laser physics and technology.Particularly in the last decades,owing to the in-depth attention on structured light with multiple degrees of freedom,the research on spatial and spatiotemporal structures of laser beams has been promptly developed.Such beams have hatched various breakthroughs in many fields,including imaging,microscopy,metrology,communication,optical trapping,and quantum information processing.Here,we would like to provide an overview of the extensive research on several areas relevant to spatial patterns of structured laser beams,from spontaneous organization to multiple transformations.These include the early theory of beam pattern formation based on the Maxwell–Bloch equations,the recent eigenmodes superposition theory based on the time-averaged Helmholtz equations,the beam patterns extension of ultrafast lasers to the spatiotemporal beam structures,and the structural transformations in the nonlinear frequency conversion process of structured beams.展开更多
We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which...We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.展开更多
Recently,structured light beams have attracted substantial attention in many applications,including optical communications,imaging,optical tweezers,and quantum optics.We propose and experimentally demonstrate a reconf...Recently,structured light beams have attracted substantial attention in many applications,including optical communications,imaging,optical tweezers,and quantum optics.We propose and experimentally demonstrate a reconfigurable structured light beam generator in order to generate diverse structured light beams with adjustable beam types,beam orders,and beam sizes.By controlling the sizes of generated free-space structured light beams,free-space orbital angular momentum(OAM)beams and vector beams are coupled into an air-core fiber.To verify that our structured light generator enables generating structured light with high beam quality,polarization distributions and mode purity of generated OAM beams and vector beams in both free space and air-core fiber are characterized.Such a structured light generator may pave the way for future applications based on higher-order structured light beams.展开更多
In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary el...In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.展开更多
Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient ...Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.展开更多
On the basis of the stationary phase principle,we construct a family of shaping nondiffracting structured caustic beams with the desired morphology.First,the analytical formula of a nondiffracting astroid caustic is d...On the basis of the stationary phase principle,we construct a family of shaping nondiffracting structured caustic beams with the desired morphology.First,the analytical formula of a nondiffracting astroid caustic is derived theoretically using the stationary phase method.Then,several types of typical desired caustics with different shapes are numerically simulated using the obtained formulas.Hence,the key optical structure and propagation characteristics of nondiffracting caustic beams are investigated.Finally,a designed phase plate and an axicon are used to generate the target light field.The experimental results confirm the theoretical prediction.Compared with the classical method,the introduced method for generating nondiffracting caustic beams is high in light-energy utilization;hence,it is expected to be applied conveniently to scientific experiments.展开更多
A new type of transferring structure for steel reinforced concrete (SRC) beams is used in high building. The pushover analysis method was used to study the failure mechanism and ductility of SRC transferring structure...A new type of transferring structure for steel reinforced concrete (SRC) beams is used in high building. The pushover analysis method was used to study the failure mechanism and ductility of SRC transferring structure through consulting pseudo-static test results for the structure. And, the occurrence order and position of the plastic hinge, the weak story and seismic capacity of high building with SRC transferring story were also studied through consulting shaking table test results for the high building, showing that the seismic behavior of high building with SRC transferring story is good.展开更多
The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were...The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.展开更多
Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To ...Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.展开更多
The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three differen...The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm2, 1 ×10^13 ions/cm2 and 5 × 10^13 ions/em2 at room temperature. The XRD analysis shows that the tetragonal phase of Sn02 NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine Sn02 NWs exhibit the chemical composition of SnO2 while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO2 is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO2 NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.展开更多
The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dy...The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dynamics. Theoretical expressions of the power flow in the structures are given and examined. The numerical results of the expressions are good agreements with the measuring re- sults obtained by the technique of vibration intensity. On the basis of these results, possible ways of reducing the vibrational power flow in the structures are suggested .展开更多
Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This meth...Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.展开更多
Growth of ln0.52Al0.48As epitaxial layers on lnP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressures (V/III flux ratios from 30 to 300) has been carried out. Analysis performed using low...Growth of ln0.52Al0.48As epitaxial layers on lnP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressures (V/III flux ratios from 30 to 300) has been carried out. Analysis performed using low-temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) shows a strong and prominent dependence of the PL and XRD linewidths on the V/III flux ratio. Under our growth conditions, both the PL and XRD linewidths exhibit a minimum point at a V/III flux ratio of 150 which corresponds to a maximum in the PL intensity and XRD intensity ratio. Flux ratios exceeding 150 result in an increase in both the PL and XRD linewidths corresponding to a reduction in their associated intensities. Room temperature Raman scattering measurements show a narrowing in the lnAs-like and AlAs-like longitudinal-optic (LO)phonon linewidths which broaden at high flux ratios, while the LO phonon frequencies exhibit a gradual reduction as the flux ratio is increased. PL spectra taken at increasing temperatures show a quenching of the main emission peak followed by the evolution of a broad lower energy emission which is possibly associated with deep lying centres. This effect is more prominent in samples grown at lower V/III flux ratios. Hall effect measurements show a gradual reduction in the mobility in correspondence to an increase in the electron concentration as the flux ratio is increased.展开更多
Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films i...Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.展开更多
This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe sup...This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.展开更多
Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the i...Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).展开更多
Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer.In the case of 3D trapping with a single beam,this is termed optical tweezers.Optical tweezers ...Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer.In the case of 3D trapping with a single beam,this is termed optical tweezers.Optical tweezers are a powerful and noninvasive tool for manipulating small objects,and have become indispensable in many fields,including physics,biology,soft condensed matter,among others.In the early days,optical trapping was typically accomplished with a single Gaussian beam.In recent years,we have witnessed rapid progress in the use of structured light beams with customized phase,amplitude,and polarization in optical trapping.Unusual beam properties,such as phase singularities on-axis and propagation invariant nature,have opened up novel capabilities to the study of micromanipulation in liquid,air,and vacuum.We summarize the recent advances in the field of optical trapping using structured light beams.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12274105)the Heilongjiang Natural Science Funds for Distinguished Young Scholars(Grant No.JQ2022A001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021020)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province(Grant No.LH2023A006).
文摘Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
基金supported by the National Natural Science Foundation of China(Nos.62275191,61605142,and 61827821)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.17JCJQJC43500)the Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences(Open Fund of the State Key Laboratory of High Field Laser Physics)。
文摘The manipulation of structured light beams requires simultaneous spatial modulation of amplitude and phase.Based on the double-phase holography(DPH)algorithm,we demonstrate an efficient reconstruction of Bessel beams with arbitrary onaxis intensity.Also,the off-axis DPH method enables more than doubled laser energy utilization compared with the widelyused off-axis phase wrapping modulation method.The DPH algorithm is also used in two-photon polymerization to enable the rapid fabrication of microtube arrays,ortho-hexagonal scaffolds,and 2D patterned microstructures.This work gives experimental proof to show the powerful feasibility of the DPH method in constructing economic adaptive laser processing systems.
文摘Spatial patterns are a significant characteristic of lasers.The knowledge of spatial patterns of structured laser beams is rapidly expanding,along with the progress of studies on laser physics and technology.Particularly in the last decades,owing to the in-depth attention on structured light with multiple degrees of freedom,the research on spatial and spatiotemporal structures of laser beams has been promptly developed.Such beams have hatched various breakthroughs in many fields,including imaging,microscopy,metrology,communication,optical trapping,and quantum information processing.Here,we would like to provide an overview of the extensive research on several areas relevant to spatial patterns of structured laser beams,from spontaneous organization to multiple transformations.These include the early theory of beam pattern formation based on the Maxwell–Bloch equations,the recent eigenmodes superposition theory based on the time-averaged Helmholtz equations,the beam patterns extension of ultrafast lasers to the spatiotemporal beam structures,and the structural transformations in the nonlinear frequency conversion process of structured beams.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774137 and 11404147)the Major Program of the National Natural Science Foundation of China(Grant No.51239005)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20140519 and BK20140523)the Jiangsu Qing Lan Project,Chinathe Practice Innovation Training Program Projects for Industrial Center of Jiangsu University,China
文摘We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.
基金supported by the National Natural Science Foundation of China(Grant Nos.62125503 and 62261160388)the Key R&D Program of Hubei Province of China(Grant Nos.2020BAB001 and 2021BAA024)+3 种基金the Key R&D Program of Guangdong Province(Grant No.2018B030325002)the Shenzhen Science and Technology Program(Grant No.JCYJ20200109114018750)the Open Projects Foundation of State Key Laboratory of Optical Fiber and Cable Manufacture Technology(Grant No.SKLD2201)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2021BG004).
文摘Recently,structured light beams have attracted substantial attention in many applications,including optical communications,imaging,optical tweezers,and quantum optics.We propose and experimentally demonstrate a reconfigurable structured light beam generator in order to generate diverse structured light beams with adjustable beam types,beam orders,and beam sizes.By controlling the sizes of generated free-space structured light beams,free-space orbital angular momentum(OAM)beams and vector beams are coupled into an air-core fiber.To verify that our structured light generator enables generating structured light with high beam quality,polarization distributions and mode purity of generated OAM beams and vector beams in both free space and air-core fiber are characterized.Such a structured light generator may pave the way for future applications based on higher-order structured light beams.
文摘In this paper, the reliability of orthotropic plate and beams composite structures, which is under the actions of the stochastic loading and stochastic boundary conditions, have been analyzed by stochastic boundary element method. First, the boundary integral equation of orthotropic plate and beams composite structures is given in this paper, and then based on the stochastic boundary element method, the method for reliability analysis of stochastic structures is establishes and formulas for computation of reliability index of orthotropic plate and beams composite structures are obtained. The computed examples show the efficient of the method used in this paper.
基金The project was financially supported by the National Natural Science Foundation of China
文摘Combined multi-body dynamics with structural dynamics, a new discrete element with flexible connector, which is applicable for 3-D beam structures, is developed in this paper. Both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off-diagonal in a general case. The zero-length rigid element is introduced to simulate the node at which multiple elements are jointed together. It may also be effective when the axes of adjacent elements are not in the same line. The examples for eigenvalue calculation show that the model is successful. It can be extended to the geometric nonlinear response analysis.
基金supported by the National Natural Science Foundation of China(No.11974314).
文摘On the basis of the stationary phase principle,we construct a family of shaping nondiffracting structured caustic beams with the desired morphology.First,the analytical formula of a nondiffracting astroid caustic is derived theoretically using the stationary phase method.Then,several types of typical desired caustics with different shapes are numerically simulated using the obtained formulas.Hence,the key optical structure and propagation characteristics of nondiffracting caustic beams are investigated.Finally,a designed phase plate and an axicon are used to generate the target light field.The experimental results confirm the theoretical prediction.Compared with the classical method,the introduced method for generating nondiffracting caustic beams is high in light-energy utilization;hence,it is expected to be applied conveniently to scientific experiments.
文摘A new type of transferring structure for steel reinforced concrete (SRC) beams is used in high building. The pushover analysis method was used to study the failure mechanism and ductility of SRC transferring structure through consulting pseudo-static test results for the structure. And, the occurrence order and position of the plastic hinge, the weak story and seismic capacity of high building with SRC transferring story were also studied through consulting shaking table test results for the high building, showing that the seismic behavior of high building with SRC transferring story is good.
基金Funded by the National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientifi c Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.
基金Supported by the National Natural Science Foundation of China(No.51525803)the Scientific and Technological Development Plans of Tianjin Construction System(No.2013-35)+1 种基金International Science&Technology Cooperation Program of China(No.2012DFA70810)the Basic Science Research Foundation of IEM,CEA(No.2013B07)
文摘Most reinforced concrete(RC)frame structures did not achieve the "strong column-weak beam" failure mode in recent big earthquakes, resulting in a large number of casualties and significant property loss. To deal with this serious problem, a new column-beam relative factor was proposed to characterize the relative yield situation of column ends and beam ends. By limiting the column-beam relative factor, RC frame structures could achieve the "strong column-weak beam" failure mode under the excitation of strong ground motions. The limit values of column-beam relative factor were calculated, analyzed and verified by using structural simulation models for corner columns in the bottom story of structures, which are destroyed most seriously in earthquakes. The results show that the limit values should be analyzed under bi-directional ground motion and with different axial compression ratios of columns. The peak ground acceleration(PGA)of ground motions has no significant effect on the limit values, while the type of strong ground motions has a significant effect on the limit values.
基金Supported by the Department of Physics,the University of AJKHigh Tech.Centralized Instrumentation Lab,the University of AJK,Pakistanthe Experimental Physics Division,and the National Center for Physics,Islamabad Pakistan
文摘The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (Sn02 NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm2, 1 ×10^13 ions/cm2 and 5 × 10^13 ions/em2 at room temperature. The XRD analysis shows that the tetragonal phase of Sn02 NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine Sn02 NWs exhibit the chemical composition of SnO2 while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO2 is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO2 NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.
文摘The vibrational power flow in the beam-plate assemblies and then with the isolators is investigated using analytical ' power flow' approach based on the some concepts of mechanical mo- bility and structural dynamics. Theoretical expressions of the power flow in the structures are given and examined. The numerical results of the expressions are good agreements with the measuring re- sults obtained by the technique of vibration intensity. On the basis of these results, possible ways of reducing the vibrational power flow in the structures are suggested .
文摘Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.
文摘Growth of ln0.52Al0.48As epitaxial layers on lnP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressures (V/III flux ratios from 30 to 300) has been carried out. Analysis performed using low-temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) shows a strong and prominent dependence of the PL and XRD linewidths on the V/III flux ratio. Under our growth conditions, both the PL and XRD linewidths exhibit a minimum point at a V/III flux ratio of 150 which corresponds to a maximum in the PL intensity and XRD intensity ratio. Flux ratios exceeding 150 result in an increase in both the PL and XRD linewidths corresponding to a reduction in their associated intensities. Room temperature Raman scattering measurements show a narrowing in the lnAs-like and AlAs-like longitudinal-optic (LO)phonon linewidths which broaden at high flux ratios, while the LO phonon frequencies exhibit a gradual reduction as the flux ratio is increased. PL spectra taken at increasing temperatures show a quenching of the main emission peak followed by the evolution of a broad lower energy emission which is possibly associated with deep lying centres. This effect is more prominent in samples grown at lower V/III flux ratios. Hall effect measurements show a gradual reduction in the mobility in correspondence to an increase in the electron concentration as the flux ratio is increased.
文摘Thin films of ZnxCd1-xS have been prepared by electron beam evaporation of a mixture of ZnS & CdS powders. The films are deposited onto sodalime glass slides under similar conditions.The composition of the films is varied from CdS to ZnS (x=0 to 1). The films show a regular change in color from toner red to orange yellow as Zn concentration increases to maximum.These films are characterized for their optical, electricaI and structural properties. The bandgap value of ZnxCd1-xS films is found to vary linearIy from 2.20 eV to 3.44 eV with change in the x value from 0 to 1. The resistivity of these films is in the range of 171.0 Ωcm to 5.5× 106Ωcm for x=0~0.6. All the samples show cubic structure after annealing in air at 250℃ for 40 min.The lattice constant ao varies from 0.5884 nm to 0.54109 nm linearly.
文摘This paper describes a new design of the neutral beam manifold based on a more optimized support system.A proposed alternative scheme has presented to replace the former complex manifold supports and internal pipe supports in the final design phase.Both the structural reliability and feasibility were confirmed with detailed analyses.Comparative analyses between two typical types of manifold support scheme were performed.All relevant results of mechanical analyses for typical operation scenarios and fault conditions are presented.Future optimization activities are described,which will give useful information for a refined setting of components in the next phase.
基金Jiangsu Province key laboratory of thin film with Grant No. K2021.
文摘Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).
基金We thank Professor Kishan Dholakia for his instructive advice and help on the preparation of the manuscript.Y.Y thanks Dr.Leiming Zhou for the helpful discussion.This work was supported by the National Natural Science Foundation of China(11874102 and 61975047)the Sichuan Province Science and Technology Support Program(2020JDRC0006)the Fundamental Research Funds for the Central Universities(ZYGX2019J102).M.C.and Y.A.thank the UK Engineering and Physical Sciences Research Council for funding.
文摘Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer.In the case of 3D trapping with a single beam,this is termed optical tweezers.Optical tweezers are a powerful and noninvasive tool for manipulating small objects,and have become indispensable in many fields,including physics,biology,soft condensed matter,among others.In the early days,optical trapping was typically accomplished with a single Gaussian beam.In recent years,we have witnessed rapid progress in the use of structured light beams with customized phase,amplitude,and polarization in optical trapping.Unusual beam properties,such as phase singularities on-axis and propagation invariant nature,have opened up novel capabilities to the study of micromanipulation in liquid,air,and vacuum.We summarize the recent advances in the field of optical trapping using structured light beams.