A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists ...A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists of rich N solute atoms while the core is deficient of N solute atoms through spark plasma sintering of powder mixtures of Ti powder and BN nano-powder.The phase composition,morphology,element distribution,and mechanical properties of prepared samples were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),electron probe microanalyzer(EPMA),and electronic universal material testing machine.The results indicate that the TMCs with designed architectures have been successfully achieved,and the as-prepared Ti-2BN(wt.%)composite exhibits an ultimate compressive strength of~1.8 GPa with a strain-to-fracture of~9%,while the Ti-1BN(wt.%)attains an ultimate compressive strength of~1.6 GPa and a strain-to-fracture of~20%.Moreover,the roles of the hybrid reinforcement structures in strengthening the Ti composites were discussed.展开更多
This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accur...This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accuracy of the solution are studied using two columns,two braced frames,and one unbraced frame.Discussion is provided when the new geometric stiffness matrix can be used to improve the buckling load analysis results and when it may provide only nominal additional benefit.展开更多
A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism a...A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.展开更多
With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materia...With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.展开更多
A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes. By performing KPCA on subsets of variables, a set of structured residuals, i.e....A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes. By performing KPCA on subsets of variables, a set of structured residuals, i.e., scaled powers of KPCA, can be obtained in the same way as partial PCA. The structured residuals are utilized in composing an isolation scheme for sensor fault diagnosis, according to a properly designed incidence matrix. Sensor fault sensitivity and critical sensitivity are defined, based on which an incidence matrix optimization algorithm is proposed to improve the performance of the structured KPCA. The effectiveness of the proposed method is demonstrated on the simulated continuous stirred tank reactor (CSTR) process.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are ea...We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.展开更多
The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compar...The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.展开更多
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st...Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.展开更多
Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-por...Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement.展开更多
The effects of vegetation restoration on matrix structure and erosion resistance of iron tailings were studied at dump sites in Malanzhuang, Qian'an, Hebei province, China. The restoration process involved soil sp...The effects of vegetation restoration on matrix structure and erosion resistance of iron tailings were studied at dump sites in Malanzhuang, Qian'an, Hebei province, China. The restoration process involved soil spray sowing restoration model with Rhus typhina, soil and iron tailings admixture spray sowing restoration model with Amorpha fruticosa Linn. and six-hole brick restoration model with Pinus tabulaeformis Carriere.–Amorpha fruticosa Linn. mixed-forest, and direct restoration model with Hippophae rhamnoides and Sabina vulgaris. Results show that the composition and distribution of particles and aggregates were closely related to erosion resistance(P < 0.05), indicating that matrix structure of iron tailings play an important role in erosion resistance. The improvement in matrix structure of iron tailings by the different restoration models was in the order of R. typhina soil spray sowing > A. fruticosa soil and iron tailings admixture spray sowing > mixed-forest six-hole brick >H. rhamnoides direct restoration > S. vulgaris direct restoration. The R. typhina soil spray sowing restorationmodel resulted in the greatest improvement in matrix structure of iron tailings, increasing the clay(10.6%) and large particle aggregates(18.7%) contents significantly(P < 0.01). Simultaneously, particle population, grading conditions(Cu= 28.86, Cs= 1.65), and aggregate stability(6.02) were significantly improved. The A. fruticosa soil and iron tailings admixture spray sowing restoration model,which effectively improved particle distribution(Cu-= 8.51, Cs= 1.07), increased the number of large aggregates considerably(9.6%), thereby increasing aggregate stability(6.2). The six-hole brick model significantly increased the number of large aggregates(4.0%) and improved the stability of aggregates(6.2). H. rhamnoides direct restoration improved the stability of aggregates(5.1)but showed no other significant improvements. The effect of S. vulgaris direct restoration on matrix structure of iron tailings was not significant. Due to its dependence on matrix structure of iron tailings, the erosion resistance of R.typhina soil spray sowing restoration model was the greatest, while that of S. vulgaris direct restoration was the weakest. There was no significant difference in the erosion resistance of the other models. Overall, vegetation restoration supplemented by soil spray sowing restoration and engineering measures is superior to in situ direct vegetation restoration in the short-term. In-situ direct restoration has long-term ecological significance because of its advanced concept of near-natural restoration and the advantages of low cost, easy operation, and low secondary damage.展开更多
To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and...To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.展开更多
The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF...The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation.展开更多
Pore structure characteristics are significant factor in the evaluation of the physical characteristics of low-rank coal.In this study,three low-rank coal samples were collected from the Xishanyao Formation,Santanghu ...Pore structure characteristics are significant factor in the evaluation of the physical characteristics of low-rank coal.In this study,three low-rank coal samples were collected from the Xishanyao Formation,Santanghu Basin,and low-temperature liquid-nitrogen adsorption(LP-N2A)measurements were taken under various pretreatment temperatures.Owing to the continuous loss of water and volatile matter in low-rank coal,the total pore volume assumes a three-step profile with knee temperatures of 150°C and 240°C.However,the ash in the coal can protect the coal skeleton.Pore collapse mainly occurs for mesopores with aperture smaller than 20 nm.Mesopores with apertures smaller than 5 nm exhibit a continuous decrease in pore volume,whereas the pore volume of mesopores with apertures ranging from 5 to 10 nm increases at lower pretreatment temperatures(<150°C)followed by a faint decrease.As for mesopores with apertures larger than 10 nm,the pore volume increases significantly when the pretreatment temperature reaches 300°C.The pore structure of low-rank coal features a significant heating effect,the pretreatment temperature should not exceed 150°C when the LP-N2A is used to evaluate the pore structure of low-rank coal to effectively evaluate the reservoir characteristics of low-rank coal.展开更多
It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical...It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones.展开更多
Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings w...Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.展开更多
Effect of nitrogen on matrix structure of 3 different varieties of gray cast iron,i.e., sub-eutectic Fe-C-Si,near-eutectic Fe-C-Si and Fe-C-Si-Mn,has been investigated. The eutectie colony structure of gray cast iron ...Effect of nitrogen on matrix structure of 3 different varieties of gray cast iron,i.e., sub-eutectic Fe-C-Si,near-eutectic Fe-C-Si and Fe-C-Si-Mn,has been investigated. The eutectie colony structure of gray cast iron may be refined,the pearlite content increased and the micro-hardness of pearlite and ferrite raised with an addition of nitrogen.The influ- ence of nitrogen on the transformation temperature of the equilibrium and non-equilibrium phases,as well as,the solution of nitrogen in ferrite and cementite seem to be the major rea- sons to strengthening the matrix structure of gray cast iron.展开更多
In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessar...In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessary. Based on that, the structural system reliability is analyzed with a fourth-order moment method. The reliability sensitivity is required to conduct the differential operation of the numerical characteristic functions. A reliability sensitivity analysis formula is then derived in combination with the relation of the differential operation. Based on the matrix theory and Kronecker algebra, this paper systematically derives a matrix expression of the first four moments of the state functions, and establishes the matrix relation between the first four moments of the state functions and those of the basic random variables. On this basis, a differential operation formula of the first four moments of the state functions is further derived against the first four moments of the basic random variables. The vector relation between the state functions and the multidimensional basic random variables is described by means of the matrix operation to extend the operation method. Finally, a concise and intuitive formula is obtained to explore the inherent essential relation between the numerical characteristics of the state functions and those of the basic random variables, leading to a universal equation for the two kinds of numerical characteristics.展开更多
基金supported by the National Natural Science Foundation of China (No. 91320201 and No. 61471262)the International (Regional) Collaborative Key Research Projects (No. 61520106002)
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金supported by the Australian Research Council(No.LP130100913)the Baosteel-Australia Joint Research and Development Centre on the Project(No.BA110014LP)。
文摘A novel architectural Ti composite composed of network-woven structured TiB nanowires in a core-shell structured Ti matrix was fabricated to improve the strength of Ti matrix composites(TMCs),where the shell consists of rich N solute atoms while the core is deficient of N solute atoms through spark plasma sintering of powder mixtures of Ti powder and BN nano-powder.The phase composition,morphology,element distribution,and mechanical properties of prepared samples were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),electron probe microanalyzer(EPMA),and electronic universal material testing machine.The results indicate that the TMCs with designed architectures have been successfully achieved,and the as-prepared Ti-2BN(wt.%)composite exhibits an ultimate compressive strength of~1.8 GPa with a strain-to-fracture of~9%,while the Ti-1BN(wt.%)attains an ultimate compressive strength of~1.6 GPa and a strain-to-fracture of~20%.Moreover,the roles of the hybrid reinforcement structures in strengthening the Ti composites were discussed.
文摘This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accuracy of the solution are studied using two columns,two braced frames,and one unbraced frame.Discussion is provided when the new geometric stiffness matrix can be used to improve the buckling load analysis results and when it may provide only nominal additional benefit.
基金supported by National Natural Science Foundation of China (Grant No. 51075039, Grant No. 50805110,Grant No. 50705010)Beijing Municipal Natural Science Foundation of China (Grant No. 3082014)the Fundamental Research Funds for the Central Universities of China (Grant No. 2009CZ08, Grant No. JY10000904010)
文摘A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(51903145 and 51973173)Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China(2019JC-11)+1 种基金Fundamental Research Funds for the Central Universities(D5000210627)This work is also financially supported by Polymer Electromagnetic Functional Materials Innovation Team of Shaanxi Sanqin Scholars.
文摘With the widespread application of electronic communication technology,the resulting electromagnetic radiation pollution has been significantly increased.Metal matrix electromagnetic interference(EMI)shielding materials have disadvantages such as high density,easy corrosion,difficult processing and high price,etc.Polymer matrix EMI shielding composites possess light weight,corrosion resistance and easy processing.However,the current polymer matrix composites present relatively low electrical conductivity and poor EMI shielding performance.This review firstly discusses the key concept,loss mechanism and test method of EMI shielding.Then the current development status of EMI shielding materials is summarized,and the research progress of polymer matrix EMI shielding composites with different structures is illustrated,especially for their preparation methods and evaluation.Finally,the corresponding key scientific and technical problems are proposed,and their development trend is also prospected.
基金supported by Scientific Reserch Fund of SiChuan Provincial Education Department (No.07ZB013)by the Scientific ResearchFoundation of CUIT (No.CSRF200704)
文摘A new sensor fault diagnosis method based on structured kernel principal component analysis (KPCA) is proposed for nonlinear processes. By performing KPCA on subsets of variables, a set of structured residuals, i.e., scaled powers of KPCA, can be obtained in the same way as partial PCA. The structured residuals are utilized in composing an isolation scheme for sensor fault diagnosis, according to a properly designed incidence matrix. Sensor fault sensitivity and critical sensitivity are defined, based on which an incidence matrix optimization algorithm is proposed to improve the performance of the structured KPCA. The effectiveness of the proposed method is demonstrated on the simulated continuous stirred tank reactor (CSTR) process.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6011)the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 08A055 and 07C528)
文摘We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.
基金Projects(2019JJ60050,2018JJ3121) supported by the Natural Science Foundation of Hunan Province,ChinaProject(KFBM20170004) supported by the Jiangsu Province Key Laboratory of Materials Surface Science and Technology,China
文摘The microstructures and interface structures of basalt particle reinforced 7A04 Al matrix composites (BP/7A04 Al) were analyzed by using OM, TEM, SEM and EDS, and the mechanical properties of 7A04 Al alloy were compared with those of BP/7A04 Al matrix composites. The results show that the basalt particles are dispersed in the Al matrix and form a strong bonding interface with the Al matrix. SiO2 at the edge of the basalt particles is continuously replaced by Al2O3 formed in the reaction, forming a high-temperature reaction layer with a thickness of several tens of nanometers, and Al2O3 strengthens the bonding interface between basalt particles and Al matrix. The dispersed basalt particles promote the dislocation multiplication, vacancy formation and precipitation of the matrix, and the precipitated phases mainly consist of plate-like η(MgZn2) phase and bright white band-shaped or ellipsoidal T (Al2Mg3Zn3) phase. The bonding interface, high dislocation density and dispersion strengthening phase significantly improve the mechanical properties of the composites. The yield strength and ultimate tensile strength of BP/7A04 Al matrix composites are up to 665 and 699 MPa, which increase by 11.4% and 10.9% respectively compared with 7A04 Al alloy without basalt particles.
基金Project supported by the Program for New Century Excellent Talents in Universities(NCET)by the Ministry of Education of China(No.NCET-04-0373)
文摘Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.
基金This work was financially supported by the Natural Science Foundation of Shandong Province, China (Y2006F03).
文摘Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement.
基金financed by the National Science and Technology Program in Rural Areas in 12th Five-Year(No.2012AA101403-32012)the High Level Talents Program in Hebei Province(B2014010004)the Provincial Financial Forestry Science and Technology Popularization Program in Hebei Province(201705201)。
文摘The effects of vegetation restoration on matrix structure and erosion resistance of iron tailings were studied at dump sites in Malanzhuang, Qian'an, Hebei province, China. The restoration process involved soil spray sowing restoration model with Rhus typhina, soil and iron tailings admixture spray sowing restoration model with Amorpha fruticosa Linn. and six-hole brick restoration model with Pinus tabulaeformis Carriere.–Amorpha fruticosa Linn. mixed-forest, and direct restoration model with Hippophae rhamnoides and Sabina vulgaris. Results show that the composition and distribution of particles and aggregates were closely related to erosion resistance(P < 0.05), indicating that matrix structure of iron tailings play an important role in erosion resistance. The improvement in matrix structure of iron tailings by the different restoration models was in the order of R. typhina soil spray sowing > A. fruticosa soil and iron tailings admixture spray sowing > mixed-forest six-hole brick >H. rhamnoides direct restoration > S. vulgaris direct restoration. The R. typhina soil spray sowing restorationmodel resulted in the greatest improvement in matrix structure of iron tailings, increasing the clay(10.6%) and large particle aggregates(18.7%) contents significantly(P < 0.01). Simultaneously, particle population, grading conditions(Cu= 28.86, Cs= 1.65), and aggregate stability(6.02) were significantly improved. The A. fruticosa soil and iron tailings admixture spray sowing restoration model,which effectively improved particle distribution(Cu-= 8.51, Cs= 1.07), increased the number of large aggregates considerably(9.6%), thereby increasing aggregate stability(6.2). The six-hole brick model significantly increased the number of large aggregates(4.0%) and improved the stability of aggregates(6.2). H. rhamnoides direct restoration improved the stability of aggregates(5.1)but showed no other significant improvements. The effect of S. vulgaris direct restoration on matrix structure of iron tailings was not significant. Due to its dependence on matrix structure of iron tailings, the erosion resistance of R.typhina soil spray sowing restoration model was the greatest, while that of S. vulgaris direct restoration was the weakest. There was no significant difference in the erosion resistance of the other models. Overall, vegetation restoration supplemented by soil spray sowing restoration and engineering measures is superior to in situ direct vegetation restoration in the short-term. In-situ direct restoration has long-term ecological significance because of its advanced concept of near-natural restoration and the advantages of low cost, easy operation, and low secondary damage.
基金supported by the National Natural Science Foundation of China (Nos. 71471087, 71071076, 61673209)the Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics (No. BCXJ17-11)the Research and Innovation Program for Graduate Education of Jiangsu Province (No. KYZZ160145)
文摘To reduce the uncertainty and reworks in complex projects,a novel mechanism is systematically developed in this paper based on two classical design structure matrix(DSM)clustering methods:Loop searching method(LSM)and function searching method(FSM).Specifically,the optimal working areas for the two clustering methods are first obtained quantitatively in terms of non-zero fraction(NZF)and singular value modularity index(SMI),in which the whole working area is divided into six sub-zones.Then,a judgement procedure is proposed for conveniently choosing the optimal DSM clustering method,which makes it easy to determine which DSM clustering method performs better for a given case.Subsequently,a conceptual model is constructed to assist project managers in effectively analyzing the network of projects and greatly reducing reworks in complex projects by defining preventive actions.Finally,the aircraft design process is presented to show how the proposed judgement mechanism can be utilized to reduce the reworks in actual projects.
基金The project supported by the National Natural Science Foundation of China(50278054)
文摘The polynomial matrix using the block coefficient matrix representation auto-regressive moving average(referred to as the PM-ARMA)model is constructed in this paper for actively controlled multi-degree-of-freedom(MDOF)structures with time-delay through equivalently transforming the preliminary state space realization into the new state space realization.The PM-ARMA model is a more general formulation with respect to the polynomial using the coefficient representation auto-regressive moving average(ARMA)model due to its capability to cope with actively controlled structures with any given structural degrees of freedom and any chosen number of sensors and actuators.(The sensors and actuators are required to maintain the identical number.)under any dimensional stationary stochastic excitation.
基金This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2019JQ-527)Shandong Key laboratory of Depositional Mineralization and Sedimentary Mineral Open Fund(Program No.DMSM20190014)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.20JS116)。
文摘Pore structure characteristics are significant factor in the evaluation of the physical characteristics of low-rank coal.In this study,three low-rank coal samples were collected from the Xishanyao Formation,Santanghu Basin,and low-temperature liquid-nitrogen adsorption(LP-N2A)measurements were taken under various pretreatment temperatures.Owing to the continuous loss of water and volatile matter in low-rank coal,the total pore volume assumes a three-step profile with knee temperatures of 150°C and 240°C.However,the ash in the coal can protect the coal skeleton.Pore collapse mainly occurs for mesopores with aperture smaller than 20 nm.Mesopores with apertures smaller than 5 nm exhibit a continuous decrease in pore volume,whereas the pore volume of mesopores with apertures ranging from 5 to 10 nm increases at lower pretreatment temperatures(<150°C)followed by a faint decrease.As for mesopores with apertures larger than 10 nm,the pore volume increases significantly when the pretreatment temperature reaches 300°C.The pore structure of low-rank coal features a significant heating effect,the pretreatment temperature should not exceed 150°C when the LP-N2A is used to evaluate the pore structure of low-rank coal to effectively evaluate the reservoir characteristics of low-rank coal.
基金supported by the National Natural Science Foundation of China(61171127)
文摘It is understood that the sparse signal recovery with a standard compressive sensing(CS) strategy requires the measurement matrix known as a priori. The measurement matrix is, however, often perturbed in a practical application.In order to handle such a case, an optimization problem by exploiting the sparsity characteristics of both the perturbations and signals is formulated. An algorithm named as the sparse perturbation signal recovery algorithm(SPSRA) is then proposed to solve the formulated optimization problem. The analytical results show that our SPSRA can simultaneously recover the signal and perturbation vectors by an alternative iteration way, while the convergence of the SPSRA is also analytically given and guaranteed. Moreover, the support patterns of the sparse signal and structured perturbation shown are the same and can be exploited to improve the estimation accuracy and reduce the computation complexity of the algorithm. The numerical simulation results verify the effectiveness of analytical ones.
文摘Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions.
文摘Effect of nitrogen on matrix structure of 3 different varieties of gray cast iron,i.e., sub-eutectic Fe-C-Si,near-eutectic Fe-C-Si and Fe-C-Si-Mn,has been investigated. The eutectie colony structure of gray cast iron may be refined,the pearlite content increased and the micro-hardness of pearlite and ferrite raised with an addition of nitrogen.The influ- ence of nitrogen on the transformation temperature of the equilibrium and non-equilibrium phases,as well as,the solution of nitrogen in ferrite and cementite seem to be the major rea- sons to strengthening the matrix structure of gray cast iron.
基金Project supported by the National Natural Science Foundation of China(Nos.51135003 and U1234208)the Major State Basic Research Development Program of China(973 Program)(No.2014CB046303)
文摘In a structural system reliability analysis that lacks probabilistic information, calculating the numerical characteristics of the state functions, especially the first four moments of the state functions, is necessary. Based on that, the structural system reliability is analyzed with a fourth-order moment method. The reliability sensitivity is required to conduct the differential operation of the numerical characteristic functions. A reliability sensitivity analysis formula is then derived in combination with the relation of the differential operation. Based on the matrix theory and Kronecker algebra, this paper systematically derives a matrix expression of the first four moments of the state functions, and establishes the matrix relation between the first four moments of the state functions and those of the basic random variables. On this basis, a differential operation formula of the first four moments of the state functions is further derived against the first four moments of the basic random variables. The vector relation between the state functions and the multidimensional basic random variables is described by means of the matrix operation to extend the operation method. Finally, a concise and intuitive formula is obtained to explore the inherent essential relation between the numerical characteristics of the state functions and those of the basic random variables, leading to a universal equation for the two kinds of numerical characteristics.