Objective:Self-directed training represents a challenge in simulation-based training as low cognitive effort can occur when learners overrate their own level of performance.This study aims to explore the mechanisms un...Objective:Self-directed training represents a challenge in simulation-based training as low cognitive effort can occur when learners overrate their own level of performance.This study aims to explore the mechanisms underlying the positive effects of a structured self-assessment intervention during simulation-based training of mastoidectomy.Methods:A prospective,educational cohort study of a novice training program consisting of directed,self-regulated learning with distributed practice(5x3 procedures)in a virtual reality temporal bone simulator.The intervention consisted of structured self-assessment after each procedure using a rating form supported by small videos.Semi-structured telephone interviews upon completion of training were conducted with 13 out of 15 participants.Interviews were analysed using directed content analysis and triangulated with quantitative data on secondary task reaction time for cognitive load estimation and participants’self-assessment scores.Results:Six major themes were identified in the interviews:goal-directed behaviour,use of learning supports for scaffolding of the training,cognitive engagement,motivation from self-assessment,selfassessment bias,and feedback on self-assessment(validation).Participants seemed to self-regulate their learning by forming individual sub-goals and strategies within the overall goal of the procedure.They scaffolded their learning through the available learning supports.Finally,structured self-assessment was reported to increase the participants’cognitive engagement,which was further supported by a quantitative increase in cognitive load.Conclusions:Structured self-assessment in simulation-based surgical training of mastoidectomy seems to promote cognitive engagement and motivation in the learning task and to facilitate self-regulated learning.展开更多
Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patie...Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.展开更多
Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类...Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。展开更多
Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for ...Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.展开更多
Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the ass...Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.展开更多
The objective of this study is to examine the application effect of the Objective Structured Clinical Examination(OSCE)model in the comprehensive practical training course for higher vocational nursing.Based on the ev...The objective of this study is to examine the application effect of the Objective Structured Clinical Examination(OSCE)model in the comprehensive practical training course for higher vocational nursing.Based on the evaluation dimensions of core nursing competencies,the OSCE framework was constructed with the clinical nursing work process as the main focus and supported by a nursing case database.A questionnaire survey revealed that over 80%of students in the experimental group were satisfied with the application of OSCE in the nursing comprehensive practical training course,and more than 90%believed that OSCE assessment enhanced their theoretical knowledge and practical skills.The OSCE was also considered helpful in transforming learned knowledge and skills into professional competencies.展开更多
The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elas...The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elastic-plastic FEM analysis based on SYSWELD code.Then,the welding distortion of floor structure was predicted using a linear elastic FEM and shrinkage method based on Weld Planner software.The effects of welding sequence,clamping configuration and reverse deformation on welding distortion of floor structure were examined numerically.The results indicate that the established elastic FEM model for floor structure is reliable for predicting the distribution of welding distortion in view of the good agreement between the calculated results and the measured distortion for real double floor structure.Compared with the welding sequence,the clamping configuration and the reverse deformation have a significant influence on the welding distortion of floor structure.In the case of30 mm reverse deformation,the maximum deformation can be reduced about 70%in comparison to an actual welding process.展开更多
According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was ...According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.展开更多
The safety of trains,a highly efficient mode of transportation,has attracted significant attention.In the vehicle structure design of a train,the evaluation of the passenger evacuation time is necessary.The establishm...The safety of trains,a highly efficient mode of transportation,has attracted significant attention.In the vehicle structure design of a train,the evaluation of the passenger evacuation time is necessary.The establishment of a simulation model is the fastest,most convenient,and practical way to achieve this goal.However,few scholars have focused on the reliability of a passenger train evacuation simulation model.This paper proposes a new validation method based on dynamic time warping and multidimensional scaling.The proposed method validates the dynamic process of a simulation model,provides statistical results,and can be used for small-sample scenarios such as a train evacuation scenario.The results of a case study indicate that the proposed method is an effective and quantitative approach to the validation of simulation models in a dynamic process.Thus,this paper describes the influence of the train structure size on an evacuation based on the results of simulation experiments.The structural size factors include the door width,aisle width,and seat pitch.The experiment results indicate that a wide aisle and reasonable seat pitch can promote a proper evacuation.In addition,a normal train door width has no effect on an evacuation.展开更多
To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation thr...To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.展开更多
Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ...Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains.展开更多
Structural and rotational isomorphism in planetary Gear Trains (PGTs), is tested by Hamming number method. Symmetry in PGTs can be determined from the same Hamming matrix. Bearing of the structural property like symme...Structural and rotational isomorphism in planetary Gear Trains (PGTs), is tested by Hamming number method. Symmetry in PGTs can be determined from the same Hamming matrix. Bearing of the structural property like symmetry in PGTs is studied and is used to evaluate its influence on generation of PGTs.展开更多
Endurance training in the aerobic zone of metabolism promotes a transition from type II to type I muscle fibers, influences the enzyme system of the Krebs cycle, electron transport chain, capillary supply, changes in ...Endurance training in the aerobic zone of metabolism promotes a transition from type II to type I muscle fibers, influences the enzyme system of the Krebs cycle, electron transport chain, capillary supply, changes in key metabolic enzymes involved in fatty acid activation, and increased oxygen uptake in skeletal muscle. First of all, the transition process is related to the contractile apparatus. 5'adenosine monophosphate-activated protein kinase is activated in response to endurance training and related to the metabolic adaptation of skeletal muscle. The peroxisome proliferator-activated receptor isoform δ is an important regulator of skeletal muscle endurance capacity. Resistance training improves muscle contractile function and increases muscle mass as a result of an anabolic and anti catabolic effect in fast-twitch fibers. Resistance training expands the amount of the contractile apparatus in order to enlarge fiber cross-sectional area. A concomitant alteration in proteins phenotype of contractile apparatus and metabolic enzyme levels occurs in accordance with activity-induced changes in the muscle's fiber-type profile. Recovery of skeletal muscle mechanical properties depends on the structural and metabolic peculiarities of muscle and the character of training.展开更多
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process...Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.展开更多
This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures"...This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures".展开更多
This paper studies correlations between the spatial structure character of thermal forcing and deformation and the amplitude of rays of meridional wave train. It is shown that if thermal forcing appears a meridional l...This paper studies correlations between the spatial structure character of thermal forcing and deformation and the amplitude of rays of meridional wave train. It is shown that if thermal forcing appears a meridional linear variation the rays of quasi-stationary planetary wave may propagate along oblique lines and if the meridional variability of heat source has second order term the rays show distinct deformation as a great circular route. Additionally, the inhomogeneous distribution may cause lower frequency oscillations in mid- and low-latitudes. The combination of zonal and meridional wave numbers and distributive character of heat source may form an inverse mechanism of variational trend of generized wave energy, reflecting in some degree the physical process of transition between meridional and zonal flow patterns.展开更多
Lithium ion battery fire hazard has been well-documented in a variety of applications.Recently,battery train technology has been introduced as a clean energy concept for railway.In the case of heavy locomotives such a...Lithium ion battery fire hazard has been well-documented in a variety of applications.Recently,battery train technology has been introduced as a clean energy concept for railway.In the case of heavy locomotives such as trains,the massive collection of battery stacks required to meet energy demands may pose a significant hazard.The objective of this paper is to review the risk evaluation processes for train fires and investigate the propagation of lithium ion battery fire to a neighboring steel warehouse structure at a rail repair shop through a case study.The methodology of the analyses conducted include a Monte Carlo-based dynamic modeling of fire propagation potentials,an expert-based fire impact analysis,and a finite element(FE)nonlinear fire analysis on the structural frame.The case study is presented as a demonstration of a holistic fire risk analysis for the lithium ion battery fire and results indicate that significant battery fire mitigations strategies should be considered.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, t...Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of un- steady Reynold-averaged Navier-Stokes (URANS) and de- tached eddy simulation (DES) are utilized, respectively. Re- suits reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.展开更多
文摘Objective:Self-directed training represents a challenge in simulation-based training as low cognitive effort can occur when learners overrate their own level of performance.This study aims to explore the mechanisms underlying the positive effects of a structured self-assessment intervention during simulation-based training of mastoidectomy.Methods:A prospective,educational cohort study of a novice training program consisting of directed,self-regulated learning with distributed practice(5x3 procedures)in a virtual reality temporal bone simulator.The intervention consisted of structured self-assessment after each procedure using a rating form supported by small videos.Semi-structured telephone interviews upon completion of training were conducted with 13 out of 15 participants.Interviews were analysed using directed content analysis and triangulated with quantitative data on secondary task reaction time for cognitive load estimation and participants’self-assessment scores.Results:Six major themes were identified in the interviews:goal-directed behaviour,use of learning supports for scaffolding of the training,cognitive engagement,motivation from self-assessment,selfassessment bias,and feedback on self-assessment(validation).Participants seemed to self-regulate their learning by forming individual sub-goals and strategies within the overall goal of the procedure.They scaffolded their learning through the available learning supports.Finally,structured self-assessment was reported to increase the participants’cognitive engagement,which was further supported by a quantitative increase in cognitive load.Conclusions:Structured self-assessment in simulation-based surgical training of mastoidectomy seems to promote cognitive engagement and motivation in the learning task and to facilitate self-regulated learning.
基金Supported by National Natural Science Foundation of China(Grant No.61273342)Beijing Municipal Natural Science Foundation of China(Grant Nos.3113026,3132005)
文摘Due to the close physical interaction between human and machine in process of gait training, lower limb exoskeletons should be safe, comfortable and able to smoothly transfer desired driving force/moments to the patients. Correlatively, in kinematics the exoskeletons are required to be compatible with human lower limbs and thereby to avoid the uncontrollable interactional loads at the human-machine interfaces. Such requirement makes the structure design of exoskeletons very difficult because the human-machine closed chains are complicated. In addition, both the axis misalignments and the kinematic character difference between the exoskeleton and human joints should be taken into account. By analyzing the DOF(degree of freedom) of the whole human-machine closed chain, the human-machine kinematic incompatibility of lower limb exoskeletons is studied. An effective method for the structure design of lower limb exoskeletons, which are kinematically compatible with human lower limb, is proposed. Applying this method, the structure synthesis of the lower limb exoskeletons containing only one-DOF revolute and prismatic joints is investigated; the feasible basic structures of exoskeletons are developed and classified into three different categories. With the consideration of quasi-anthropopathic feature, structural simplicity and wearable comfort of lower limb exoskeletons, a joint replacement and structure comparison based approach to select the ideal structures of lower limb exoskeletons is proposed, by which three optimal exoskeleton structures are obtained. This paper indicates that the human-machine closed chain formed by the exoskeleton and human lower limb should be an even-constrained kinematic system in order to avoid the uncontrollable human-machine interactional loads. The presented method for the structure design of lower limb exoskeletons is universal and simple, and hence can be applied to other kinds of wearable exoskeletons.
文摘Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。
基金the National Natural Science Foundation of China (Nos. 52388102, 52072317 and U2268210)the State Key Laboratory of Rail Transit Vehicle System (No. 2024RVL-T12)
文摘Hunting stability is an important performance criterion in railway vehicles.This study proposes an incorporation of a bio-inspired limb-like structure(LLS)-based nonlinear damping into the motor suspension system for traction units to improve the nonlinear critical speed and hunting stability of high-speed trains(HSTs).Initially,a vibration transmission analysis is conducted on a HST vehicle and a metro vehicle that suffered from hunting motion to explore the effect of different motor suspension systems from on-track tests.Subsequently,a simplified lateral dynamics model of an HST bogie is established to investigate the influence of the motor suspension on the bogie hunting behavior.The bifurcation analysis is applied to optimize the motor suspension parameters for high critical speed.Then,the nonlinear damping of the bio-inspired LLS,which has a positive correlation with the relative displacement,can further improve the modal damping of hunting motion and nonlinear critical speed compared with the linear motor suspension system.Furthermore,a comprehensive numerical model of a high-speed train,considering all nonlinearities,is established to investigate the influence of different types of motor suspension.The simulation results are well consistent with the theoretical analysis.The benefits of employing nonlinear damping of the bio-inspired LLS into the motor suspension of HSTs to enhance bogie hunting stability are thoroughly validated.
基金This work was partly funded by the National Key R&D Project of China(2021YFB3400704)China State Railway Group(K2022J004 and N2023J011)China Railway Chengdu Group(CJ23018).
文摘Purpose–The safety and reliability of high-speed trains rely on the structural integrity of their components and the dynamic performance of the entire vehicle system.This paper aims to define and substantiate the assessment of the structural integrity and dynamical integrity of high-speed trains in both theory and practice.The key principles and approacheswill be proposed,and their applications to high-speed trains in Chinawill be presented.Design/methodology/approach–First,the structural integrity and dynamical integrity of high-speed trains are defined,and their relationship is introduced.Then,the principles for assessing the structural integrity of structural and dynamical components are presented and practical examples of gearboxes and dampers are provided.Finally,the principles and approaches for assessing the dynamical integrity of highspeed trains are presented and a novel operational assessment method is further presented.Findings–Vehicle system dynamics is the core of the proposed framework that provides the loads and vibrations on train components and the dynamic performance of the entire vehicle system.For assessing the structural integrity of structural components,an open-loop analysis considering both normal and abnormal vehicle conditions is needed.For assessing the structural integrity of dynamical components,a closed-loop analysis involving the influence of wear and degradation on vehicle system dynamics is needed.The analysis of vehicle system dynamics should follow the principles of complete objects,conditions and indices.Numerical,experimental and operational approaches should be combined to achieve effective assessments.Originality/value–The practical applications demonstrate that assessing the structural integrity and dynamical integrity of high-speed trains can support better control of critical defects,better lifespan management of train components and better maintenance decision-making for high-speed trains.
基金Education and Teaching Reform and Practice Project of Guangdong Province Vocational Colleges Steering Committee for Integration of Production and Education in 2022“Research on the Application of OSCE Mode in Vocational Nursing Training Teaching”(Project No.2022CJRH14)。
文摘The objective of this study is to examine the application effect of the Objective Structured Clinical Examination(OSCE)model in the comprehensive practical training course for higher vocational nursing.Based on the evaluation dimensions of core nursing competencies,the OSCE framework was constructed with the clinical nursing work process as the main focus and supported by a nursing case database.A questionnaire survey revealed that over 80%of students in the experimental group were satisfied with the application of OSCE in the nursing comprehensive practical training course,and more than 90%believed that OSCE assessment enhanced their theoretical knowledge and practical skills.The OSCE was also considered helpful in transforming learned knowledge and skills into professional competencies.
基金financial support to this project from the Chinese CSR Qingdao Sifang Co.,Ltd
文摘The welding heat source models and the plastic tension zone sizes of a typical weld joint involved in the double floor structure of high speed train under different welding parameters were calculated by a thermal-elastic-plastic FEM analysis based on SYSWELD code.Then,the welding distortion of floor structure was predicted using a linear elastic FEM and shrinkage method based on Weld Planner software.The effects of welding sequence,clamping configuration and reverse deformation on welding distortion of floor structure were examined numerically.The results indicate that the established elastic FEM model for floor structure is reliable for predicting the distribution of welding distortion in view of the good agreement between the calculated results and the measured distortion for real double floor structure.Compared with the welding sequence,the clamping configuration and the reverse deformation have a significant influence on the welding distortion of floor structure.In the case of30 mm reverse deformation,the maximum deformation can be reduced about 70%in comparison to an actual welding process.
基金Project(U1134203)supported by the National Natural Science Foundation of China
文摘According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II,pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.
基金Supported by State Key Laboratory Foundation of China(Grant No.RCS2018ZT009)
文摘The safety of trains,a highly efficient mode of transportation,has attracted significant attention.In the vehicle structure design of a train,the evaluation of the passenger evacuation time is necessary.The establishment of a simulation model is the fastest,most convenient,and practical way to achieve this goal.However,few scholars have focused on the reliability of a passenger train evacuation simulation model.This paper proposes a new validation method based on dynamic time warping and multidimensional scaling.The proposed method validates the dynamic process of a simulation model,provides statistical results,and can be used for small-sample scenarios such as a train evacuation scenario.The results of a case study indicate that the proposed method is an effective and quantitative approach to the validation of simulation models in a dynamic process.Thus,this paper describes the influence of the train structure size on an evacuation based on the results of simulation experiments.The structural size factors include the door width,aisle width,and seat pitch.The experiment results indicate that a wide aisle and reasonable seat pitch can promote a proper evacuation.In addition,a normal train door width has no effect on an evacuation.
基金Project(2005J002) supported by the Foundation of the Science and Technology Section of the Ministry of Railway of China
文摘To protect passengers, absorb enough kinetic energy and meet the special requirements for trains which are different from the other means of transportation, a method is presented to realize the plastic deformation threshold based on three main aspects of train connection structure, crashworthy vehicle structure, energy-absorbing component. In practical engineering, trains need enough strength and stiffness to transfer longitudinal force under the normal operation condition, and have to produce controllable large plastic dcfbrmation to absorb energy shortly under the collision condition. To realize the structural damage threshold of connecting structure in terminal end, two control methods are also proposed which can be divided as the parametric method based on 'extrusion' and 'cutting' theories; the method which can cut the connecting components between coupler-buffer devices and train bodies and separate them away when the damage thresholds of coupler-buffer devices are more than the pre-supposed damage thresholds. The damage thresholds can be realized based on changing the parameters of the number of shearing bolts, material parameters, etc. To realize the collision threshold of energy-absorbing components of trains, a control method is presented based on the ways of setting plastic deformation induced structure, local hole and pre-deformation structure. To realize the threshold of the controllable plastic structure of energy-absorbing vehicles, a control method is proposed for the multi-level longitudinal stiffness of train terminal structures.
基金supported by the National Natural Science Foundations of China(Nos.50821063 and 50823004)973 Program(No.2007CB714701)the Fundamental Research Funds for the Central Universities(No.2010XS34)
文摘Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains.
文摘Structural and rotational isomorphism in planetary Gear Trains (PGTs), is tested by Hamming number method. Symmetry in PGTs can be determined from the same Hamming matrix. Bearing of the structural property like symmetry in PGTs is studied and is used to evaluate its influence on generation of PGTs.
文摘Endurance training in the aerobic zone of metabolism promotes a transition from type II to type I muscle fibers, influences the enzyme system of the Krebs cycle, electron transport chain, capillary supply, changes in key metabolic enzymes involved in fatty acid activation, and increased oxygen uptake in skeletal muscle. First of all, the transition process is related to the contractile apparatus. 5'adenosine monophosphate-activated protein kinase is activated in response to endurance training and related to the metabolic adaptation of skeletal muscle. The peroxisome proliferator-activated receptor isoform δ is an important regulator of skeletal muscle endurance capacity. Resistance training improves muscle contractile function and increases muscle mass as a result of an anabolic and anti catabolic effect in fast-twitch fibers. Resistance training expands the amount of the contractile apparatus in order to enlarge fiber cross-sectional area. A concomitant alteration in proteins phenotype of contractile apparatus and metabolic enzyme levels occurs in accordance with activity-induced changes in the muscle's fiber-type profile. Recovery of skeletal muscle mechanical properties depends on the structural and metabolic peculiarities of muscle and the character of training.
文摘Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.
文摘This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures".
文摘This paper studies correlations between the spatial structure character of thermal forcing and deformation and the amplitude of rays of meridional wave train. It is shown that if thermal forcing appears a meridional linear variation the rays of quasi-stationary planetary wave may propagate along oblique lines and if the meridional variability of heat source has second order term the rays show distinct deformation as a great circular route. Additionally, the inhomogeneous distribution may cause lower frequency oscillations in mid- and low-latitudes. The combination of zonal and meridional wave numbers and distributive character of heat source may form an inverse mechanism of variational trend of generized wave energy, reflecting in some degree the physical process of transition between meridional and zonal flow patterns.
基金The authors would like to acknowledge the funding received under NCDOT Project#2020-40.Additional funding also received from the UNC Charlotte College of Engineering Dean’s Office.Dean Bob Johnson’s support of this effort is greatly appreciated.
文摘Lithium ion battery fire hazard has been well-documented in a variety of applications.Recently,battery train technology has been introduced as a clean energy concept for railway.In the case of heavy locomotives such as trains,the massive collection of battery stacks required to meet energy demands may pose a significant hazard.The objective of this paper is to review the risk evaluation processes for train fires and investigate the propagation of lithium ion battery fire to a neighboring steel warehouse structure at a rail repair shop through a case study.The methodology of the analyses conducted include a Monte Carlo-based dynamic modeling of fire propagation potentials,an expert-based fire impact analysis,and a finite element(FE)nonlinear fire analysis on the structural frame.The case study is presented as a demonstration of a holistic fire risk analysis for the lithium ion battery fire and results indicate that significant battery fire mitigations strategies should be considered.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by the National Key Technology R&D Program(2009BAG12A03)the Major State Basic Research Development Program of China(2011CB711101)
文摘Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of un- steady Reynold-averaged Navier-Stokes (URANS) and de- tached eddy simulation (DES) are utilized, respectively. Re- suits reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.