There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the...The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation,it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately,a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly,the eigenvalue and eigenvector of the image are estimated by linear structure tensor,and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined,combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge,so that the water edge can be maintained more accurately.Finally,on this basis,the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.展开更多
Classical mathematical morphology operations use a fixed size and shape structuring element to process the whole image.Due to the diversity of image content and the complexity of target structure,for processed image,i...Classical mathematical morphology operations use a fixed size and shape structuring element to process the whole image.Due to the diversity of image content and the complexity of target structure,for processed image,its shape may be changed and part of the information may be lost.Therefore,we propose a method for constructing salience adaptive morphological structuring elements based on minimum spanning tree(MST).First,the gradient image of the input image is calculated,the edge image is obtained by non-maximum suppression(NMS)of the gradient image,and then chamfer distance transformation is performed on the edge image to obtain a salience map(SM).Second,the radius of structuring element is determined by calculating the maximum and minimum values of SM and then the minimum spanning tree is calculated on the SM.Finally,the radius is used to construct a structuring element whose shape and size adaptively change with the local features of the input image.In addition,the basic morphological operators such as erosion,dilation,opening and closing are redefined using the adaptive structuring elements and then compared with the classical morphological operators.The simulation results show that the proposed method can make full use of the local features of the image and has better processing results in image structure preservation and image filtering.展开更多
Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I...Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end.展开更多
To investigate the application of meta-model for finite element( FE) model updating of structures,the performance of two popular meta-model,i. e.,Kriging model and response surface model( RSM),were compared in detail....To investigate the application of meta-model for finite element( FE) model updating of structures,the performance of two popular meta-model,i. e.,Kriging model and response surface model( RSM),were compared in detail. Firstly,above two kinds of meta-model were introduced briefly. Secondly,some key issues of the application of meta-model to FE model updating of structures were proposed and discussed,and then some advices were presented in order to select a reasonable meta-model for the purpose of updating the FE model of structures. Finally,the procedure of FE model updating based on meta-model was implemented by updating the FE model of a truss bridge model with the measured modal parameters. The results showed that the Kriging model was more proper for FE model updating of complex structures.展开更多
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc...The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.展开更多
In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency...In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency bluetooth technology to forecast the gas concentration in real time. The data tested by SCM, then got the corresponding mathematical model of the data. Put forward the idea of using fuzzy structured element theory to dynamic forecast the gas concentration, analyzed the features in abnormal-effusing on work face and judge whether there was the possibility of abnormal gas-effusion. Simulation results show that mathematical model of this system about gas concentration is correct. This system changes coal mine monitoring system's traditional way of after-alarming into early-warning, and thus enhances its feasibility.展开更多
Using Moore-Penrose inverse theory, a set of formulations for calculating the static responses of a changed finite element structure are given in this paper. Using these formulations by structural analysis may elimina...Using Moore-Penrose inverse theory, a set of formulations for calculating the static responses of a changed finite element structure are given in this paper. Using these formulations by structural analysis may eliminate the need of assembling the stiffness matrix and solving a set of simultaneous equations.展开更多
Cognitive ability is important component of competitive ability of athletes,an important content of winning elements in sports,and an important topic of modern sports training and scientific research.These problems wi...Cognitive ability is important component of competitive ability of athletes,an important content of winning elements in sports,and an important topic of modern sports training and scientific research.These problems will restrict the improvement of athletes’cognitive ability and mental level.Based on the theory of psychology,use multiple hierarchical thinking,research cognitive theory of sports and the characteristics of cognitive ability of elite athletes,research the structure element system of cognitive ability,construct a two-level structure model of the cognitive ability of excellent athletes,summarize specific characteristics of the first level elements,and apply psychological cognitive theory to the training of modern Olympic Games mobilization,so as to provide valuable cognitive training,psychological training,and intelligence training for athletes theoretical guidance.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturb...In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturbation method, a unifiedrandom variational principle in finite defomation of elastieity and nonlinear randomfinite element method are esiablished, and used.for reliability, analysis of structures.Numerical examples showed that the methods have the advontages of simple andconvenient program implementation and are effective for the probabilistic problems inmechanics.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin...The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data proces...A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.展开更多
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to...Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.展开更多
An adaptive morphological impulses extraction method (AMIE) for bearing fault diagnosis is pro- posed. This method uses the morphological closing operation with a flat structuring element (SE) to extract impulsive...An adaptive morphological impulses extraction method (AMIE) for bearing fault diagnosis is pro- posed. This method uses the morphological closing operation with a flat structuring element (SE) to extract impulsive features from vibration signals with strong background noise. To optimize the flat SE, firstly, a theoretical study is carried out to investigate the effects of the length of the flat SE. Then, based on the theoretical findings, an adaptive algorithm for the flat SE optimization is proposed. The AMIE method is tested by the simulated signal and bearing vibration signals. The test results show that this method is effective and robust in extracting impulsive features.展开更多
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic ...In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing.展开更多
Fabrication and use of Cross Laminated Timber(CLT)using tropical woods is still limited at present.Therefore objective of the present study aims to determine the possibility of using CLT panels of 3 and 5 layers,fabri...Fabrication and use of Cross Laminated Timber(CLT)using tropical woods is still limited at present.Therefore objective of the present study aims to determine the possibility of using CLT panels of 3 and 5 layers,fabricated withTectona grandis and Gmelina arborea wood using adhesive of isocyanate polymer emulsion system catalyzed with polymeric isocyanate.Delamination,water absorption,density,flexure test,compression and glue-line shear were evaluated using ANSI/APA PRG320-2012 ASTM D198 and ASTM D4761 standard.The results showed that CLT panels of T.grandis presented higher values of density,less water absorption and lower delamination,with no evident differences between the CLT of 3 and 5 layers.The high density of T.grandis resulted in higher values of the mechanical properties.The flatwise and edgewise flexure tests in 5-layer CLT panels of both species pre-sented higher values of bending stiffness compared to those of 3-layer CLT panels.Further the bending stress values in 3-layer CLT panels were higher than for 5-layer CLT panels.As for shear stress in bending flatwise,in both species,3-layer CLT surpassed 5-layer CLT panels,but in the edgewise test no differences were observed.The MOE and Fc in the compression test were superior in relation to the edgewise test.MOE and Fc in compres-sion flatwise in 3-layer CLT was greater than in 5-layer CLT in both species,but edgewise these values were higher in 5-layer CLT panels.The most common failures were stress and delamination in the flexure test,whereas in the compression test these were:shearing,splitting and crushing.In the glue-line shear test no differences were observed between CLT panels of 3 and 5 layers for both species.展开更多
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
基金National Natural Science Foundation of China(No.61761027)Graduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)。
文摘The use of visible and infrared remote sensing images to calculate the water area is an effective means to grasp the basic situation of water resources,and water segmentation is the premise of statistics.Generally,the edge features of the water in the remote sensing images are complex.When the traditional morphology is used for image segmentation,it is easy to change the image edge and affect the accuracy of image segmentation because the fixed structuring elements are used to perform morphological operations on the image.To segment water in the remote sensing image accurately,a remote sensing image water segmentation method based on adaptive morphological elliptical structuring elements is proposed.Firstly,the eigenvalue and eigenvector of the image are estimated by linear structure tensor,and the elliptical structuring elements are constructed by the eigenvalue and eigenvector.Then adaptive morphological operations are defined,combining the close operation to eliminate the influence of dark detail noise on water without overstretching the water edge,so that the water edge can be maintained more accurately.Finally,on this basis,the water area can be segmented by gray slice.The experimental results show that the proposed method has higher segmentation accuracy and the average segmentation error is less than 1.43%.
基金National Natural Science Foundation of China(No.61761027)。
文摘Classical mathematical morphology operations use a fixed size and shape structuring element to process the whole image.Due to the diversity of image content and the complexity of target structure,for processed image,its shape may be changed and part of the information may be lost.Therefore,we propose a method for constructing salience adaptive morphological structuring elements based on minimum spanning tree(MST).First,the gradient image of the input image is calculated,the edge image is obtained by non-maximum suppression(NMS)of the gradient image,and then chamfer distance transformation is performed on the edge image to obtain a salience map(SM).Second,the radius of structuring element is determined by calculating the maximum and minimum values of SM and then the minimum spanning tree is calculated on the SM.Finally,the radius is used to construct a structuring element whose shape and size adaptively change with the local features of the input image.In addition,the basic morphological operators such as erosion,dilation,opening and closing are redefined using the adaptive structuring elements and then compared with the classical morphological operators.The simulation results show that the proposed method can make full use of the local features of the image and has better processing results in image structure preservation and image filtering.
基金This paper was funded by the following:National Natural Science Foundation of China(51974317,51904302,52034009)Yue Qi Distinguished Scholar Project(800015Z1179,800015Z1138)China University of Mining and Technology(Beijing)and the Fundamental Research Funds for the Central Universities(2020YQNY06).
文摘Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end.
基金Sponsored by the National Key Technology Research and Development Program of China(Grant No.2011BAK02B02)
文摘To investigate the application of meta-model for finite element( FE) model updating of structures,the performance of two popular meta-model,i. e.,Kriging model and response surface model( RSM),were compared in detail. Firstly,above two kinds of meta-model were introduced briefly. Secondly,some key issues of the application of meta-model to FE model updating of structures were proposed and discussed,and then some advices were presented in order to select a reasonable meta-model for the purpose of updating the FE model of structures. Finally,the procedure of FE model updating based on meta-model was implemented by updating the FE model of a truss bridge model with the measured modal parameters. The results showed that the Kriging model was more proper for FE model updating of complex structures.
基金National Natural Science Foundation of China!59575026
文摘The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
文摘In order to accurately test gas concentration and effectively pre-waming when the gas concentration over-limited on work face, used the high-performance and low prices SCM and the low-cost and high transfer efficiency bluetooth technology to forecast the gas concentration in real time. The data tested by SCM, then got the corresponding mathematical model of the data. Put forward the idea of using fuzzy structured element theory to dynamic forecast the gas concentration, analyzed the features in abnormal-effusing on work face and judge whether there was the possibility of abnormal gas-effusion. Simulation results show that mathematical model of this system about gas concentration is correct. This system changes coal mine monitoring system's traditional way of after-alarming into early-warning, and thus enhances its feasibility.
文摘Using Moore-Penrose inverse theory, a set of formulations for calculating the static responses of a changed finite element structure are given in this paper. Using these formulations by structural analysis may eliminate the need of assembling the stiffness matrix and solving a set of simultaneous equations.
基金Thanks to Professor Korobeynikov Georgiy of National University of Physical Education and Sports of Ukraine.Thanks to Professor Chen Jinsong of Jiangsu Ocean University of Chinathanks for your support and help.
文摘Cognitive ability is important component of competitive ability of athletes,an important content of winning elements in sports,and an important topic of modern sports training and scientific research.These problems will restrict the improvement of athletes’cognitive ability and mental level.Based on the theory of psychology,use multiple hierarchical thinking,research cognitive theory of sports and the characteristics of cognitive ability of elite athletes,research the structure element system of cognitive ability,construct a two-level structure model of the cognitive ability of excellent athletes,summarize specific characteristics of the first level elements,and apply psychological cognitive theory to the training of modern Olympic Games mobilization,so as to provide valuable cognitive training,psychological training,and intelligence training for athletes theoretical guidance.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturbation method, a unifiedrandom variational principle in finite defomation of elastieity and nonlinear randomfinite element method are esiablished, and used.for reliability, analysis of structures.Numerical examples showed that the methods have the advontages of simple andconvenient program implementation and are effective for the probabilistic problems inmechanics.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.
基金National Natural Science Foundation of China(No.61261029)
文摘Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.
基金Supported by the High Technology Research and Development Programme of China (No. 2007AA04Z433) and the National Natural Science Foundation of China (No. 50635010).
文摘An adaptive morphological impulses extraction method (AMIE) for bearing fault diagnosis is pro- posed. This method uses the morphological closing operation with a flat structuring element (SE) to extract impulsive features from vibration signals with strong background noise. To optimize the flat SE, firstly, a theoretical study is carried out to investigate the effects of the length of the flat SE. Then, based on the theoretical findings, an adaptive algorithm for the flat SE optimization is proposed. The AMIE method is tested by the simulated signal and bearing vibration signals. The test results show that this method is effective and robust in extracting impulsive features.
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
文摘In this paper, multi-scaled morphology is introduced into the digital processing domain for land seismic data. First, we describe the basic theory of multi-scaled morphology image decomposition of exploration seismic waves; second, we illustrate how to use multi-scaled morphology for seismic data processing using two real examples. The first example demonstrates suppressing the surface waves in pre-stack seismic records using multi-scaled morphology decomposition and reconstitution and the other example demonstrates filtering different interference waves on the seismic record. Multi-scaled morphology filtering separates signal from noise by the detailed differences of the wave shapes. The successful applications suggest that multi-scaled morphology has a promising application in seismic data processing.
文摘Fabrication and use of Cross Laminated Timber(CLT)using tropical woods is still limited at present.Therefore objective of the present study aims to determine the possibility of using CLT panels of 3 and 5 layers,fabricated withTectona grandis and Gmelina arborea wood using adhesive of isocyanate polymer emulsion system catalyzed with polymeric isocyanate.Delamination,water absorption,density,flexure test,compression and glue-line shear were evaluated using ANSI/APA PRG320-2012 ASTM D198 and ASTM D4761 standard.The results showed that CLT panels of T.grandis presented higher values of density,less water absorption and lower delamination,with no evident differences between the CLT of 3 and 5 layers.The high density of T.grandis resulted in higher values of the mechanical properties.The flatwise and edgewise flexure tests in 5-layer CLT panels of both species pre-sented higher values of bending stiffness compared to those of 3-layer CLT panels.Further the bending stress values in 3-layer CLT panels were higher than for 5-layer CLT panels.As for shear stress in bending flatwise,in both species,3-layer CLT surpassed 5-layer CLT panels,but in the edgewise test no differences were observed.The MOE and Fc in the compression test were superior in relation to the edgewise test.MOE and Fc in compres-sion flatwise in 3-layer CLT was greater than in 5-layer CLT in both species,but edgewise these values were higher in 5-layer CLT panels.The most common failures were stress and delamination in the flexure test,whereas in the compression test these were:shearing,splitting and crushing.In the glue-line shear test no differences were observed between CLT panels of 3 and 5 layers for both species.