Struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) produced synthetically from a stock solution of known phosphorus (P) and nitrogen (N) concentrations has been shown to...Struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) produced synthetically from a stock solution of known phosphorus (P) and nitrogen (N) concentrations has been shown to be an effective, alternative fertilizer-P source for various crops, but little is known about the potential agronomic effectiveness of struvite created from an actual municipal wastewater source. The objective of this study was to evaluate the effects of soil [i.e., Creldon silt loam (Oxyaquic Fragiudalf) and Calloway silt loam (Aquic Fraglossudalf) series], fertilizer-P source [i.e., synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), monoammonium phosphate (MAP), and an unamended control (UC)], and irrigation water type (i.e., tapwater and struvite-removed wastewater) on corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] growth and N, P, and magnesium (Mg) uptake in a 60-day, greenhouse potted-plant study. Crop growth and N, P, and Mg uptakes for the struvite treatments (i.e., CPST, ECSTsyn, and ECSTreal) were generally similar to or at least 1.2 times greater than MAP. The ECSTsyn material commonly had up to five times greater N, P, and Mg uptake in corn and soybean than any other fertilizer-P source. Struvite-removed wastewater resulted in at least 1.3 times lower dry matter and N, P, and Mg uptake than tapwater. Similar corn and soybean results from the struvite fertilizers among the various soil-water type combinations compared to MAP suggest that struvite generates similar crop responses as at least one widely used, commercially available, multi-nutrient fertilizer-P source.展开更多
Studies have shown that phosphorus (P) recovered from wastewater as the mineral struvite [MgNH<sub>4</sub>PO<sub>4</sub>·6(H<sub>2</sub>O)] may be a viable alternative fertiliz...Studies have shown that phosphorus (P) recovered from wastewater as the mineral struvite [MgNH<sub>4</sub>PO<sub>4</sub>·6(H<sub>2</sub>O)] may be a viable alternative fertilizer-P source. This study aimed to compare the effectiveness of electrochemically precipitated struvite (ECST), reclaimed from synthetic wastewater, to other commercial fertilizer-P sources in cultivated soils from Arkansas [AR;silt loam (SiL) and loam (L)], Missouri (MO;SiL), and Nebraska [NE;SiL and sandy loam (SL)]. A plant-less, moist-soil incubation experiment, including ECST, chemically precipitated struvite (CPST), monoammonium phosphate (MAP), triple superphosphate (TSP), and an unamended control (UC), was conducted to quantify soil pH, nitrate (NO<sub>3</sub>-N), ammonium (NH<sub>4</sub>-N), and Mehlich-3 (M3)-P, -Ca, -Mg, and -Fe concentrations at 0.5, 1, 2, 4, and 6 months. All measured soil properties differed (P ·kg<sup>-1</sup> for AR-L-TSP after 1 month and NE-SiL-MAP after 6 months, respectively. Soil M3-P ranged from -29.6 mg·kg<sup>-1</sup> in the AR-L-UC after 1 month to 429 mg·kg<sup>-1</sup> AR-SiL-TSP after 0.5 months. Results showed that, over time, ECST had comparable pH and soil NO<sub>3</sub>-N, NH<sub>4</sub>-N, and M3-P, -Ca, -Mg, and -Fe behavior compared to CPST, MAP, and TSP across various soil textures.展开更多
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c...Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.展开更多
Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for vari...Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for various crops, but little is known about the runoff-water-quality implications from soil-applied struvite. The objective of this study was to evaluate the effects of soil [Creldon (Oxyaquic Fragiudalfs), Dapue (Fluventic Hapludolls), Roxana (Typic Udifluvents), and Calloway (Aquic Fraglossudalfs) series], fertilizer-P source [synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), and monoammonium phosphate (MAP)], and water source (rainwater, groundwater, and struvite-removed real wastewater) over time on runoff-water-quality parameters from laboratory-conducted, rainfall-runoff simulations. Mesh tea bags containing each soil-fertilizer treatment combination were rained on with each water source (Trial 1), incubated for 6 months, and rained on again (Trial 2) to evaluate runoff-water quality. Struvite fertilizers had similar runoff-water-quality properties to those from MAP. In Trial 1, runoff total P (TP) concentration differences (i.e., soil-fertilizer-water-type response minus control response minus blank response) from ECSTsyn or ECSTreal were 1 to 5 times larger than MAP and CPST for all water-soil-fertilizer-P source treatment combinations, except for the Creldon-groundwater and Roxana-wastewater combinations. In both trials, runoff TP decreased over time in all water-soil and soil-fertilizer-P source treatment combinations, except for the Roxana-CPST combination where TP increased over time by 46%. The similar water-quality responses from the struvite fertilizers among the various soils and water types compared to MAP suggest that struvite has similar runoff-water-quality implications as at least one widely used, commercially available fertilizer-P source.展开更多
In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. St...In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. Studies in lowland cultivations, specifically rice (Oryza sativa) under flood-irrigated conditions, evaluating struvite as a possible alternative phosphorus (P) fertilizer source have been limited. The objective of this study was to evaluate rice response to electrochemically precipitated struvite (ECST) compared to triple superphosphate (TSP), diammonium phosphate (DAP), a chemically precipitated struvite (CPST), and an unamended control (UC), grown under flooded-soil conditions in the greenhouse. Aboveground vegetative dry matter (DM) P concentration was greatest from the UC (0.18%) and was lowest from DAP (0.08%). Root DM Mg concentration was greatest from ECST (0.13%) and was lowest from TSP (0.10%). Grain yield was greatest from DAP (11.2 Mg•ha<sup>−1</sup>) and was lowest from the UC (4.0 Mg•ha<sup>−1</sup>). Grain N, P, K, and Mg uptake were consistently greatest from DAP and consistently lowest from the UC. Grain N concentration was 1.1 times greater from CPST than from ECST, while all other measured rice properties did not differ between the struvite-P sources. The many similar rice responses between struvite materials (ECST and CPST) and TSP and DAP demonstrate that struvite, particularly ECST, is a valid alternative fertilizer-P source for rice-production systems. Further studies should evaluate potential environmental implications (i.e., runoff water quality and greenhouse gas emissions) from struvite use that could affect agricultural sustainability.展开更多
Mg2+ and PO43+ were added into the synthetic wastewater, leading to the dissociation of the complex ions in the wastewater, and resulting in removal of copper and ammonia therein. The effects of agents addition amo...Mg2+ and PO43+ were added into the synthetic wastewater, leading to the dissociation of the complex ions in the wastewater, and resulting in removal of copper and ammonia therein. The effects of agents addition amount, pH, and reaction time on the removal efficiency of copper and ammonia were investigated. In particular, two-sectional struvite formation (TSSF) process was established for copper and ammonia removal. MgCl2 and Na2HPO4 were added by following 90% addition in the first section and remained 10% in the second during the TSSF process. Compared with one sectional struvite formation, TSSF possessed much better performance. Under condition of n(NH3-N):n(Mg):n(P)=1:1.2:1.5 (molar ratio), pH=9, and reaction time of 30 min, the removal efficiencies of copper and ammonia were 98.9% and 99.96%, respectively. The enhanced performance of TSSF is explained by the competition of ammonia by copper?ammonia complexes and struvite. The dissociation of copper-ammonia complexes is further demonstrated by thermodynamic equilibrium analysis, on the basis of calculations and establishment of predominance phases diagram. Moreover, XRD and EDS analyses further confirmed the formation of struvite and precipitation of copper, which prove the transmission of copper and ammonia from liquid phase into solid phase.展开更多
Objective To investigate the struvite precipitation under constant and non-constant pH conditions and to test a stainless steel device under different operating regimes to maximize the recovery of struvite. Methods Th...Objective To investigate the struvite precipitation under constant and non-constant pH conditions and to test a stainless steel device under different operating regimes to maximize the recovery of struvite. Methods The molar ratio of NH4^+: Mg^2+ PO43 was adjusted to 1: 1.2:1.2 and pH was elevated to 9.0. The absorbance measurement was used to trace the process of struvite crystallization. Wastewater and precipitate analysis was done by standard analytical methods. Results The pH constant experiment reported a significantly higher struvite precipitation (24.6±0.86 g) than the non-constant pH experiment (19.8±1.86 g). The SAR ranged from 5.6 to 8.2 g m^-2h^-1 to 3.6-4.8 g m^-2h^-1 in pH constant and non-constant experiments, respectively. The highest struvite deposit on the device was found in regime 3 followed by in regimes 2 and 4. The highest PO4^3- (97.2%) and NH4^+ (71%) removal was reported in the R1 regime. None of the influent Cu^2+ or Zn^2+ was precipitated on the device. Conclusion A higher struvite yield is evident in pH constant experiments. Moreover, the stainless steel device facilitates the isolation of heavy metal free pure (around 96%) struvite from swine waste biogas digester effluent contaminated with Cu^2+ and Zn^2+ and the highest yield is attainable with the device operating at 50 rpm with agitation by a magnetic stirrer.展开更多
[Objective] This study aimed to determine the optimal technical parameters for the swine wastewater treatment by struvite precipitation. [Method] Central composite design (CCD) and response surface method (RSM) we...[Objective] This study aimed to determine the optimal technical parameters for the swine wastewater treatment by struvite precipitation. [Method] Central composite design (CCD) and response surface method (RSM) were employed to study the effects of struvite precipitation on removing the ammonia nitrogen in the swine wastewater. Quadratic model was developed to describe the mathematical relationships between the investigated factors of pH value, reaction time, magnesium to nitrogen molar ratio (Mg/P), nitrogen to phosphorus molar ratio (N/P), the investigated indicators of NH 4 -N removal efficiency and residual PO 4 3 -P concentration. Contour overlay plot was proposed to predict the optimal experimental conditions with the NNH 4 -N removal efficiency of 75% and residual PO 4 3-P concentration of 3.0 mg/L as the desired values. [Result] At pH of 10.0, mixing time of 30 min, Mg/N of 1.11, N/P of 1.14, the NH 4 -N removal efficiency (Y 1 ) was the maximum of 79.0% , and the residual PO 4 3-P concentration (Y 2 ) at this time was 0.35 mg/L. The verification test of the optimal conditions proved that the verification data and model predictions agreed well. [Conclusion] The optimized parameters for the chemical struvite precipitation used to treat swine wastewater with central composite experimental design and response surface method are scientific, rational and efficient.展开更多
Objective To investigate the feasibility of nitrogen and phosphorus recovery from swine waste biogas digester effluent and the effects of pH and NH4^+: Mg2^+: PO4^3- molar ratio on its precipitation. Methods Preci...Objective To investigate the feasibility of nitrogen and phosphorus recovery from swine waste biogas digester effluent and the effects of pH and NH4^+: Mg2^+: PO4^3- molar ratio on its precipitation. Methods Precipitation experiments with swine waste biogas digester effluent were conducted at pH 7.5, 8.0, 8.5, and 9.0 together with NH4^+: Mg^2+: PO4^3- molar ratios 1: 0.2: 0.08, 1: 1: 1, and 1: 1.5: 1.5. Chemical and X-ray diffraction (XRD) analysis were done to determine the composition of the precipitate. Results The highest removal and recovery of NH4^+ and PO4^3- were achieved at pH 9.0 in each experiment. The elevation of pH to 9.0 alone could decrease the initial PO4^3- concentration from 42 mg L^-1 to 4.7 mg L-1 and 89.2% PO4^3- recovery was achieved. The pH-molar ratio combination 9.0-1: 1.5: 1.5 effected 76.5% NH4^+ and 68.5% PO4^3- recovery. The molar ratio of 1: 1: 1 together with pH elevation to 9.0 was determined to be the optimum combination for both NH4+ and PO4^3- removal as it recovered over 70% and 97% of the initial NH4^+ and PO4^3-, respectively. Conclusions Nitrogen and phosphorus can be recovered from biogas digester effluent as struvite.展开更多
A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of conti...A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.展开更多
Synthesized struvite was innovatively applied to removing Cu(II) from aqueous solution. The Cu(II) adsorption behavior and relative mechanisms were studied and analyzed. The maximum Cu(II) adsorption under pH=4....Synthesized struvite was innovatively applied to removing Cu(II) from aqueous solution. The Cu(II) adsorption behavior and relative mechanisms were studied and analyzed. The maximum Cu(II) adsorption under pH=4.0 and 318 K calculated from adsorption thermodynamic analysis was 145.1 mg/g. The sorption kinetics can be favorably described by pseudo-second order model. The activation energy (Ea) of 17.5 kJ/mol suggested that the adsorption process was a chemical adsorption. The calculated thermodynamic parameters indicated that the adsorption was a spontaneous and endothermic one. On the basis of characterization upon struvite before and after adsorption, it was found that the electrostatic attraction and coordination bonding supported the ion sorption on struvite surface, and the transformation of copper ion into copper hydroxide occurred on struvite surface and within its crevices.展开更多
The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions ad...The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions addition are presented. Continuous reaction crystallization of struvite MgNH4PO4 × 6H2O ran both under stoichiometric conditions and at 20% excess of magnesium ions (pH 9, t 900 s). It was concluded, that presence of copper (II) ions in a process system influenced product quality moderately advantageously. Mean size of struvite crystals enlarged by ca. 6% only. Lower concentration of phosphate (V) ions and excess of magnesium ions caused, that products of ca. 9% - 13% larger crystal mean size (up to ca.40mm) were removed from the crystallizer. Presence of struvite crystals and copper (II) hydroxide were detected analytically in the products (Cu in a product varied from 6 to 90 mg/kg). Presence of copper (II) ions favored crystallization of struvite in the form of tubular crystals.展开更多
In wastewater facilities, struvite (MgNH4PO4·6H2O) precipitation and subsequent accumulation within sludge processing can be an expensive nuisance or a pathway to orthophosphate reclamation and beneficial reuse. ...In wastewater facilities, struvite (MgNH4PO4·6H2O) precipitation and subsequent accumulation within sludge processing can be an expensive nuisance or a pathway to orthophosphate reclamation and beneficial reuse. Predictive solubility models developed in the past have been computationally intensive, highly conservative, and have employed uncertain equilibrium constants for the evaluation of solution saturation. The StrPI (Struvite Precipitation Index) developed in this study is a new, computationally light framework for predicting struvite precipitation based on saturation pH. The model permits process-specific calibration (i.e. StrPI plus a correction pH) to deal with the highly variable characteristics of wastewater streams and to eliminate the pH-independent overprediction inherent in existing solubility models. Verification of this model was performed across a range of waste compositions, ionic strengths, and root-mean-square velocity gradients using data from both synthetic laboratory experiments and field tests. The StrPI framework was found to be an effective and uncomplicated predictor of struvite precipitation in both environments.展开更多
The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet ...The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet pump driven by compressed air was used. Influence of pH and mean residence time of suspension on the crystal product quality was determined. Increase in pH from 9 to 11 resulted that mean crystal size decreased nearly two-time: from 27.1 to 15.1μm for mean residence time of suspension 900 s. Elongation of this time from 900 to 3,600 s influenced struvite crystal size advantageously-it increased from 27.1 to 41.2 μm at pH 9. From the population density distributions nucleation and growth rates of struvite were calculated based on the simplest SIG model of mass crystallization kinetics in MSMPR crystallizer. Linear growth rate ofstruvite crystals decreased nearly two-time with the increase in environment pH from 9 to 11, and more than 2.5-time with the elongation of mean residence time of crystal suspension in a crystallizer from 900 to 3,600 s from 1.34× 10-8 m/s (pH 9, τ= 900 s) to 2.60×10-9 m/s (pH 11, τ= 3,600 s).展开更多
Phosphorus is an irreplaceable and depletable element. Furthermore, it has an almost one-way circulation on earth, so it is necessary to close the phosphorus cycle loop. Phosphorus could be recovered as struvite, whic...Phosphorus is an irreplaceable and depletable element. Furthermore, it has an almost one-way circulation on earth, so it is necessary to close the phosphorus cycle loop. Phosphorus could be recovered as struvite, which is a good slow-released fertilizer for agriculture. The supernatant of anaerobic digestion used to treat sludge from wastewater treatment plant is one main source from which phosphorus can be recovered. Studies have proven that phosphorus recovery from digester supematant is a feasible choice to preserve phosphorus rock technically and economically. A modified "PHOSNIX" P-recovery process was applied under the operating conditions of a 9.0 pH value and a 1.8 mg: P ratio with the influent of the centrate coming from the sludge centrifuge of the Songjiang Wastewater Treatment Plant in Shanghai. More than 80% influent phosphorus was recovered as struvite. Crystal products with good purity and low heavy metal content were gained. The largest crystal had a length of up to 0.26 mm. It was found in our study that the reaction time did not play an important role in crystal growth. Therefore, the optimization of the reaction condition for crystal growth should be examined in future study.展开更多
Agrotechnical assessment of struvite produced by a lab-scale sedimentation unit is performed. As a source of phosphates and ammonia, liquor obtained through dewatering of Мunicipal wastewater treatment plant sludge w...Agrotechnical assessment of struvite produced by a lab-scale sedimentation unit is performed. As a source of phosphates and ammonia, liquor obtained through dewatering of Мunicipal wastewater treatment plant sludge was in use. The range of phosphates and ammonia was in the range of 130 - 250 and 380 - 560 mg/L, respectively. Seawater brine with a magnesium concentration of around 60 g Mg<sup>2+</sup>/L was applied as a source of magnesium. The agrotechnical characteristics of struvite obtained were compared to ammonium nitrate and carbamide in regards to the productivity effects on maize hybrid P9241. The results show that the effectiveness of struvite and some commercial fertilizers is quite close. The highest yield in the experiment was achieved with the application of carbamide plus ammonium nitrate (56.64 kg/ha), while in applying struvite solely it is 54.60 kg/ha. The highest protein content of maize (9.7%) was observed in the case of struvite/ammonium nitrate application.展开更多
Phosphorus (P) is a fundamental nutrient in agricultural production and is one of three major components in common fertilizers. The majority of fertilizer-P sources are derived from phosphorus rock (PR), which has fin...Phosphorus (P) is a fundamental nutrient in agricultural production and is one of three major components in common fertilizers. The majority of fertilizer-P sources are derived from phosphorus rock (PR), which has finite abundance;thus a sustainable source of P is imperative for future agricultural productivity. A potential sustainable P source may be the recovery of the mineral struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) from wastewater treatment plant effluent, but struvite behavior in soils of varying texture is not well characterized. The objective of this study was to assess the dissolution dynamics of a commercially available, wastewater-recovered struvite product over time in a plant-less, moist-soil incubation experiment with multiple soil textures. Chemically precipitated struvite (Crystal Green;CG) from municipal wastewater in pelletized and finely ground forms were added to soil cups at a rate of 24.5 kg<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>P<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> containing soils of varying texture (<em>i.e</em>. loam, silty clay loam, and two different silt loams) from agricultural field sites in Arkansas. Soil cups were destructively sampled five times over a 6-month period to examine the change in water-soluble (WS) and weak-acid-extractable (WAE) P, K, Ca, Mg, and Fe concentrations from their initial concentration. After 0.5 months, both WS-P and WAE-P concentrations increased (<em>P </em>< 0.05) more from initial concentrations of the finely ground CG in all soils, which averaged 76.2 and 158 mg<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>, respectively, than in the pelletized CG treatment, which averaged 14.0 and 12.2 mg<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span>1</sup>, respectively, across all soils. Over the course of the 6-month incubation, WS- and WAE-P concentrations generally increased over time in the pelletized and decreased over time in the finely ground treatment, confirming the slow-release property of pelletized CG that has been previously reported. The results of this study provide valuable insight regarding struvite-P behavior in various soils and provide further supporting evidence for the utilization of struvite as a potential alternative, sustainable fertilizer-P source.展开更多
Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystall...Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystallizer with liquid jet pump device in 298 K assuming stoichiometric conditions. Struvite crystals of mean size Lm 5.2-23.0 μm were produced depending on pH (9-11) and mean residence time of suspension in a crystallizer τ (900-3600 s). Under these conditions linear growth rate of struvite crystals (SIG MSMPR kinetic model) decreased 2-time with the increase in pH and 3-time with the elongation of mean residence time of crystal suspension from 7.11×10-9 m/s (pH 9, τ900 s) to 1.65×10-9 m/s (pH 11, τ3600 s). Nucleation rate varied within the 7.9×108-1.8×1010 1/(sm3) limits. Struvite product of maximal linear size exceeded 100 μm with 10 vol. % of < 3 μm fraction corresponded to pH 9 and τ3600 s.展开更多
Phosphate (V) ions were continuously removed from synthetic wastewater containing inorganic impurities using magnesium and ammonium ions. The product was magnesium ammonium phosphate (V) hexahydrate, struvite, MgNH4PO...Phosphate (V) ions were continuously removed from synthetic wastewater containing inorganic impurities using magnesium and ammonium ions. The product was magnesium ammonium phosphate (V) hexahydrate, struvite, MgNH4PO4 × 6H2O. Research ran in stoichiometric conditions in DT MSMPR type crystallizer with internal circulation of suspension. Increase in process environment pH from 9 to 11 resulted in 3-time decrease of mean struvite crystals size (from 40.1 to12.6mm). Elongation of mean residence time of suspension in a crystallizer up to 3600 s resulted in improvement of the product quality. Mean size of struvite crystals enlarged up to50.2mm. Based on kinetic calculations results (SIG MSMPR model) it was concluded, that linear struvite crystal growth rate varied within 5.04 × 10–9 – 1.69 × 10–8 m/s range, whereas nucleation rate within 1.4 × 107 – 1.7 × 1010 1/(s m3) limits. In solid product, besides struvite, also all impurities present in wastewater were identified analytically as hydroxides, phosphates and other salts.展开更多
Struvite (MgNH4PO46H2O) crystals were produced by infection associated with urea generating organ- isms.The aim of this study is to examine the interactions between the enzyme urease and two inhibitors, the first is a...Struvite (MgNH4PO46H2O) crystals were produced by infection associated with urea generating organ- isms.The aim of this study is to examine the interactions between the enzyme urease and two inhibitors, the first is an inhibitor monoatomic: Aluminum and the second is a polyatomic: Citrate by the methods of molecular modeling: molecular mechanics, molecular dynamics (MM+, AMBER) and molecular docking (FleX). Supersaturated solutions induce crystallization by nucleation and subsequent crystal growth .The mechanisms for the formation of calcium phosphate urinary stones are still not understood. Chemicals prod- uct has been studied extensively as inhibitors and has been observed in the attachment of crystals to in vitro study. As a complement we have using an electron microscope Hitachi TM1000, we examined specimens of crystals struvite. The various figures show a set of grains of sizes of the order of 20 μm. The majority of these particles present regular forms. This suggests the crystal growing. This result to an alteration in the expression of these faces and the development of a characteristic architectural struvite morphology. Similar changes were observed in the presence of identical concentrations of citrate acid, and Alluminuium, emphasizing the unique interaction of phosphocitrate with the struvite crystal.展开更多
文摘Struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) produced synthetically from a stock solution of known phosphorus (P) and nitrogen (N) concentrations has been shown to be an effective, alternative fertilizer-P source for various crops, but little is known about the potential agronomic effectiveness of struvite created from an actual municipal wastewater source. The objective of this study was to evaluate the effects of soil [i.e., Creldon silt loam (Oxyaquic Fragiudalf) and Calloway silt loam (Aquic Fraglossudalf) series], fertilizer-P source [i.e., synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), monoammonium phosphate (MAP), and an unamended control (UC)], and irrigation water type (i.e., tapwater and struvite-removed wastewater) on corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] growth and N, P, and magnesium (Mg) uptake in a 60-day, greenhouse potted-plant study. Crop growth and N, P, and Mg uptakes for the struvite treatments (i.e., CPST, ECSTsyn, and ECSTreal) were generally similar to or at least 1.2 times greater than MAP. The ECSTsyn material commonly had up to five times greater N, P, and Mg uptake in corn and soybean than any other fertilizer-P source. Struvite-removed wastewater resulted in at least 1.3 times lower dry matter and N, P, and Mg uptake than tapwater. Similar corn and soybean results from the struvite fertilizers among the various soil-water type combinations compared to MAP suggest that struvite generates similar crop responses as at least one widely used, commercially available, multi-nutrient fertilizer-P source.
文摘Studies have shown that phosphorus (P) recovered from wastewater as the mineral struvite [MgNH<sub>4</sub>PO<sub>4</sub>·6(H<sub>2</sub>O)] may be a viable alternative fertilizer-P source. This study aimed to compare the effectiveness of electrochemically precipitated struvite (ECST), reclaimed from synthetic wastewater, to other commercial fertilizer-P sources in cultivated soils from Arkansas [AR;silt loam (SiL) and loam (L)], Missouri (MO;SiL), and Nebraska [NE;SiL and sandy loam (SL)]. A plant-less, moist-soil incubation experiment, including ECST, chemically precipitated struvite (CPST), monoammonium phosphate (MAP), triple superphosphate (TSP), and an unamended control (UC), was conducted to quantify soil pH, nitrate (NO<sub>3</sub>-N), ammonium (NH<sub>4</sub>-N), and Mehlich-3 (M3)-P, -Ca, -Mg, and -Fe concentrations at 0.5, 1, 2, 4, and 6 months. All measured soil properties differed (P ·kg<sup>-1</sup> for AR-L-TSP after 1 month and NE-SiL-MAP after 6 months, respectively. Soil M3-P ranged from -29.6 mg·kg<sup>-1</sup> in the AR-L-UC after 1 month to 429 mg·kg<sup>-1</sup> AR-SiL-TSP after 0.5 months. Results showed that, over time, ECST had comparable pH and soil NO<sub>3</sub>-N, NH<sub>4</sub>-N, and M3-P, -Ca, -Mg, and -Fe behavior compared to CPST, MAP, and TSP across various soil textures.
基金financial support from the National Natural Science Foundation of China (21838004)Priority Academic Program Development of Jiangsu Higher Education Institutions (PPZY2015A044)Top-notch Academic Programs Project of Jiangsu Higher Education Institution (TAPP)。
文摘Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.
文摘Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for various crops, but little is known about the runoff-water-quality implications from soil-applied struvite. The objective of this study was to evaluate the effects of soil [Creldon (Oxyaquic Fragiudalfs), Dapue (Fluventic Hapludolls), Roxana (Typic Udifluvents), and Calloway (Aquic Fraglossudalfs) series], fertilizer-P source [synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), and monoammonium phosphate (MAP)], and water source (rainwater, groundwater, and struvite-removed real wastewater) over time on runoff-water-quality parameters from laboratory-conducted, rainfall-runoff simulations. Mesh tea bags containing each soil-fertilizer treatment combination were rained on with each water source (Trial 1), incubated for 6 months, and rained on again (Trial 2) to evaluate runoff-water quality. Struvite fertilizers had similar runoff-water-quality properties to those from MAP. In Trial 1, runoff total P (TP) concentration differences (i.e., soil-fertilizer-water-type response minus control response minus blank response) from ECSTsyn or ECSTreal were 1 to 5 times larger than MAP and CPST for all water-soil-fertilizer-P source treatment combinations, except for the Creldon-groundwater and Roxana-wastewater combinations. In both trials, runoff TP decreased over time in all water-soil and soil-fertilizer-P source treatment combinations, except for the Roxana-CPST combination where TP increased over time by 46%. The similar water-quality responses from the struvite fertilizers among the various soils and water types compared to MAP suggest that struvite has similar runoff-water-quality implications as at least one widely used, commercially available fertilizer-P source.
文摘In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. Studies in lowland cultivations, specifically rice (Oryza sativa) under flood-irrigated conditions, evaluating struvite as a possible alternative phosphorus (P) fertilizer source have been limited. The objective of this study was to evaluate rice response to electrochemically precipitated struvite (ECST) compared to triple superphosphate (TSP), diammonium phosphate (DAP), a chemically precipitated struvite (CPST), and an unamended control (UC), grown under flooded-soil conditions in the greenhouse. Aboveground vegetative dry matter (DM) P concentration was greatest from the UC (0.18%) and was lowest from DAP (0.08%). Root DM Mg concentration was greatest from ECST (0.13%) and was lowest from TSP (0.10%). Grain yield was greatest from DAP (11.2 Mg•ha<sup>−1</sup>) and was lowest from the UC (4.0 Mg•ha<sup>−1</sup>). Grain N, P, K, and Mg uptake were consistently greatest from DAP and consistently lowest from the UC. Grain N concentration was 1.1 times greater from CPST than from ECST, while all other measured rice properties did not differ between the struvite-P sources. The many similar rice responses between struvite materials (ECST and CPST) and TSP and DAP demonstrate that struvite, particularly ECST, is a valid alternative fertilizer-P source for rice-production systems. Further studies should evaluate potential environmental implications (i.e., runoff water quality and greenhouse gas emissions) from struvite use that could affect agricultural sustainability.
基金Project(51674305)supported by the National Natural Science Foundation of ChinaProject(2013WK2007)supported by the Key Project of Science and Technology of Hunan Province,China+1 种基金Project(2015CX001)supported by the Innovation Stimulating Program of Central South University,ChinaKey Project(1602FKDC007)supported by Science and Technology Program of Gansu Province,China
文摘Mg2+ and PO43+ were added into the synthetic wastewater, leading to the dissociation of the complex ions in the wastewater, and resulting in removal of copper and ammonia therein. The effects of agents addition amount, pH, and reaction time on the removal efficiency of copper and ammonia were investigated. In particular, two-sectional struvite formation (TSSF) process was established for copper and ammonia removal. MgCl2 and Na2HPO4 were added by following 90% addition in the first section and remained 10% in the second during the TSSF process. Compared with one sectional struvite formation, TSSF possessed much better performance. Under condition of n(NH3-N):n(Mg):n(P)=1:1.2:1.5 (molar ratio), pH=9, and reaction time of 30 min, the removal efficiencies of copper and ammonia were 98.9% and 99.96%, respectively. The enhanced performance of TSSF is explained by the competition of ammonia by copper?ammonia complexes and struvite. The dissociation of copper-ammonia complexes is further demonstrated by thermodynamic equilibrium analysis, on the basis of calculations and establishment of predominance phases diagram. Moreover, XRD and EDS analyses further confirmed the formation of struvite and precipitation of copper, which prove the transmission of copper and ammonia from liquid phase into solid phase.
基金supported by the National Key Basic Research Project of China (No. 2002CB410807)the key Project of Science and Technology of Zhejiang Province (No. 021103723)
文摘Objective To investigate the struvite precipitation under constant and non-constant pH conditions and to test a stainless steel device under different operating regimes to maximize the recovery of struvite. Methods The molar ratio of NH4^+: Mg^2+ PO43 was adjusted to 1: 1.2:1.2 and pH was elevated to 9.0. The absorbance measurement was used to trace the process of struvite crystallization. Wastewater and precipitate analysis was done by standard analytical methods. Results The pH constant experiment reported a significantly higher struvite precipitation (24.6±0.86 g) than the non-constant pH experiment (19.8±1.86 g). The SAR ranged from 5.6 to 8.2 g m^-2h^-1 to 3.6-4.8 g m^-2h^-1 in pH constant and non-constant experiments, respectively. The highest struvite deposit on the device was found in regime 3 followed by in regimes 2 and 4. The highest PO4^3- (97.2%) and NH4^+ (71%) removal was reported in the R1 regime. None of the influent Cu^2+ or Zn^2+ was precipitated on the device. Conclusion A higher struvite yield is evident in pH constant experiments. Moreover, the stainless steel device facilitates the isolation of heavy metal free pure (around 96%) struvite from swine waste biogas digester effluent contaminated with Cu^2+ and Zn^2+ and the highest yield is attainable with the device operating at 50 rpm with agitation by a magnetic stirrer.
基金Supported by the Special Fund for the Environmental Protection Research in the Public Interest, China (201009063, 2011467024)the Fundamental Research Fund for the Welfare Scientific Research Institutes, China (ZX-200809-06)the Major Science and Technology Program for Water Pollution Control and Treatment, China (2008ZX072110010)~~
文摘[Objective] This study aimed to determine the optimal technical parameters for the swine wastewater treatment by struvite precipitation. [Method] Central composite design (CCD) and response surface method (RSM) were employed to study the effects of struvite precipitation on removing the ammonia nitrogen in the swine wastewater. Quadratic model was developed to describe the mathematical relationships between the investigated factors of pH value, reaction time, magnesium to nitrogen molar ratio (Mg/P), nitrogen to phosphorus molar ratio (N/P), the investigated indicators of NH 4 -N removal efficiency and residual PO 4 3 -P concentration. Contour overlay plot was proposed to predict the optimal experimental conditions with the NNH 4 -N removal efficiency of 75% and residual PO 4 3-P concentration of 3.0 mg/L as the desired values. [Result] At pH of 10.0, mixing time of 30 min, Mg/N of 1.11, N/P of 1.14, the NH 4 -N removal efficiency (Y 1 ) was the maximum of 79.0% , and the residual PO 4 3-P concentration (Y 2 ) at this time was 0.35 mg/L. The verification test of the optimal conditions proved that the verification data and model predictions agreed well. [Conclusion] The optimized parameters for the chemical struvite precipitation used to treat swine wastewater with central composite experimental design and response surface method are scientific, rational and efficient.
基金This research was supported by the National Key Basic Research Project of China (No. 2002CB410807)Key Project of Science and Technology of Zhejiang Province (No. 021103723).
文摘Objective To investigate the feasibility of nitrogen and phosphorus recovery from swine waste biogas digester effluent and the effects of pH and NH4^+: Mg2^+: PO4^3- molar ratio on its precipitation. Methods Precipitation experiments with swine waste biogas digester effluent were conducted at pH 7.5, 8.0, 8.5, and 9.0 together with NH4^+: Mg^2+: PO4^3- molar ratios 1: 0.2: 0.08, 1: 1: 1, and 1: 1.5: 1.5. Chemical and X-ray diffraction (XRD) analysis were done to determine the composition of the precipitate. Results The highest removal and recovery of NH4^+ and PO4^3- were achieved at pH 9.0 in each experiment. The elevation of pH to 9.0 alone could decrease the initial PO4^3- concentration from 42 mg L^-1 to 4.7 mg L-1 and 89.2% PO4^3- recovery was achieved. The pH-molar ratio combination 9.0-1: 1.5: 1.5 effected 76.5% NH4^+ and 68.5% PO4^3- recovery. The molar ratio of 1: 1: 1 together with pH elevation to 9.0 was determined to be the optimum combination for both NH4+ and PO4^3- removal as it recovered over 70% and 97% of the initial NH4^+ and PO4^3-, respectively. Conclusions Nitrogen and phosphorus can be recovered from biogas digester effluent as struvite.
文摘A laboratory-scale reaction-crystallization process of struvite synthesis from diluted water solution of Mg^2+, NH^+ 4 and PO3- ions was studied. The research covered the tests of two original constructions of continuous jet-pump Draft Tube Magma (DTM)-type crystallizers with internal circulation of suspension (upward/downward). Interactions between constructional, hydrodynamic and kinetic factors were established and discussed. Nucleation and linear growth rates of struvite crystals were calculated on the basis of population density distribution. Kinetic model of idealized Mixed Suspension Mixed Product Removal (MSMPR) crystallizer considering the size-dependent growth mechanism was applied (Rojkowski hyperbolic equation). For comparison purposes the kinetic data corre- sponded to a simpler, continuous draft tube-type crystallizer equipped with propeller agitator were analyzed. It was concluded that crystal product of larger size was withdrawn from the jet-pump DTM crystallizer of the descending flow of suspension in a mixing chamber.
基金Project(51674305)supported by the National Natural Science Foundation of ChinaProject(2013WK2007)supported by the Key Project of Science and Technology of Hunan Province,ChinaProject(2015CX001)supported by the Innovation Stimulating Program of Central South University,China
文摘Synthesized struvite was innovatively applied to removing Cu(II) from aqueous solution. The Cu(II) adsorption behavior and relative mechanisms were studied and analyzed. The maximum Cu(II) adsorption under pH=4.0 and 318 K calculated from adsorption thermodynamic analysis was 145.1 mg/g. The sorption kinetics can be favorably described by pseudo-second order model. The activation energy (Ea) of 17.5 kJ/mol suggested that the adsorption process was a chemical adsorption. The calculated thermodynamic parameters indicated that the adsorption was a spontaneous and endothermic one. On the basis of characterization upon struvite before and after adsorption, it was found that the electrostatic attraction and coordination bonding supported the ion sorption on struvite surface, and the transformation of copper ion into copper hydroxide occurred on struvite surface and within its crevices.
文摘The research results concerning continuous removal of phosphate (V) ions from solutions containing 1.0 or 0.20 mass % of phosphate (V) ions and 0.2 or 0.5 mg/kg of copper (II) ions using magnesium and ammonium ions addition are presented. Continuous reaction crystallization of struvite MgNH4PO4 × 6H2O ran both under stoichiometric conditions and at 20% excess of magnesium ions (pH 9, t 900 s). It was concluded, that presence of copper (II) ions in a process system influenced product quality moderately advantageously. Mean size of struvite crystals enlarged by ca. 6% only. Lower concentration of phosphate (V) ions and excess of magnesium ions caused, that products of ca. 9% - 13% larger crystal mean size (up to ca.40mm) were removed from the crystallizer. Presence of struvite crystals and copper (II) hydroxide were detected analytically in the products (Cu in a product varied from 6 to 90 mg/kg). Presence of copper (II) ions favored crystallization of struvite in the form of tubular crystals.
文摘In wastewater facilities, struvite (MgNH4PO4·6H2O) precipitation and subsequent accumulation within sludge processing can be an expensive nuisance or a pathway to orthophosphate reclamation and beneficial reuse. Predictive solubility models developed in the past have been computationally intensive, highly conservative, and have employed uncertain equilibrium constants for the evaluation of solution saturation. The StrPI (Struvite Precipitation Index) developed in this study is a new, computationally light framework for predicting struvite precipitation based on saturation pH. The model permits process-specific calibration (i.e. StrPI plus a correction pH) to deal with the highly variable characteristics of wastewater streams and to eliminate the pH-independent overprediction inherent in existing solubility models. Verification of this model was performed across a range of waste compositions, ionic strengths, and root-mean-square velocity gradients using data from both synthetic laboratory experiments and field tests. The StrPI framework was found to be an effective and uncomplicated predictor of struvite precipitation in both environments.
文摘The results of struvite reaction crystallization from diluted water solutions of phosphates (V) (0.20 mass% of PO43-) by means of magnesium and ammonium ions are presented. Continuous FB MSZ crystallizer with jet pump driven by compressed air was used. Influence of pH and mean residence time of suspension on the crystal product quality was determined. Increase in pH from 9 to 11 resulted that mean crystal size decreased nearly two-time: from 27.1 to 15.1μm for mean residence time of suspension 900 s. Elongation of this time from 900 to 3,600 s influenced struvite crystal size advantageously-it increased from 27.1 to 41.2 μm at pH 9. From the population density distributions nucleation and growth rates of struvite were calculated based on the simplest SIG model of mass crystallization kinetics in MSMPR crystallizer. Linear growth rate ofstruvite crystals decreased nearly two-time with the increase in environment pH from 9 to 11, and more than 2.5-time with the elongation of mean residence time of crystal suspension in a crystallizer from 900 to 3,600 s from 1.34× 10-8 m/s (pH 9, τ= 900 s) to 2.60×10-9 m/s (pH 11, τ= 3,600 s).
文摘Phosphorus is an irreplaceable and depletable element. Furthermore, it has an almost one-way circulation on earth, so it is necessary to close the phosphorus cycle loop. Phosphorus could be recovered as struvite, which is a good slow-released fertilizer for agriculture. The supernatant of anaerobic digestion used to treat sludge from wastewater treatment plant is one main source from which phosphorus can be recovered. Studies have proven that phosphorus recovery from digester supematant is a feasible choice to preserve phosphorus rock technically and economically. A modified "PHOSNIX" P-recovery process was applied under the operating conditions of a 9.0 pH value and a 1.8 mg: P ratio with the influent of the centrate coming from the sludge centrifuge of the Songjiang Wastewater Treatment Plant in Shanghai. More than 80% influent phosphorus was recovered as struvite. Crystal products with good purity and low heavy metal content were gained. The largest crystal had a length of up to 0.26 mm. It was found in our study that the reaction time did not play an important role in crystal growth. Therefore, the optimization of the reaction condition for crystal growth should be examined in future study.
文摘Agrotechnical assessment of struvite produced by a lab-scale sedimentation unit is performed. As a source of phosphates and ammonia, liquor obtained through dewatering of Мunicipal wastewater treatment plant sludge was in use. The range of phosphates and ammonia was in the range of 130 - 250 and 380 - 560 mg/L, respectively. Seawater brine with a magnesium concentration of around 60 g Mg<sup>2+</sup>/L was applied as a source of magnesium. The agrotechnical characteristics of struvite obtained were compared to ammonium nitrate and carbamide in regards to the productivity effects on maize hybrid P9241. The results show that the effectiveness of struvite and some commercial fertilizers is quite close. The highest yield in the experiment was achieved with the application of carbamide plus ammonium nitrate (56.64 kg/ha), while in applying struvite solely it is 54.60 kg/ha. The highest protein content of maize (9.7%) was observed in the case of struvite/ammonium nitrate application.
文摘Phosphorus (P) is a fundamental nutrient in agricultural production and is one of three major components in common fertilizers. The majority of fertilizer-P sources are derived from phosphorus rock (PR), which has finite abundance;thus a sustainable source of P is imperative for future agricultural productivity. A potential sustainable P source may be the recovery of the mineral struvite (MgNH<sub>4</sub>PO<sub>4</sub>·6H<sub>2</sub>O) from wastewater treatment plant effluent, but struvite behavior in soils of varying texture is not well characterized. The objective of this study was to assess the dissolution dynamics of a commercially available, wastewater-recovered struvite product over time in a plant-less, moist-soil incubation experiment with multiple soil textures. Chemically precipitated struvite (Crystal Green;CG) from municipal wastewater in pelletized and finely ground forms were added to soil cups at a rate of 24.5 kg<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>P<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span></span>ha<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup> containing soils of varying texture (<em>i.e</em>. loam, silty clay loam, and two different silt loams) from agricultural field sites in Arkansas. Soil cups were destructively sampled five times over a 6-month period to examine the change in water-soluble (WS) and weak-acid-extractable (WAE) P, K, Ca, Mg, and Fe concentrations from their initial concentration. After 0.5 months, both WS-P and WAE-P concentrations increased (<em>P </em>< 0.05) more from initial concentrations of the finely ground CG in all soils, which averaged 76.2 and 158 mg<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span>1</sup>, respectively, than in the pelletized CG treatment, which averaged 14.0 and 12.2 mg<span style="white-space:nowrap;"><span style="white-space:nowrap;">∙</span></span>kg<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span>1</sup>, respectively, across all soils. Over the course of the 6-month incubation, WS- and WAE-P concentrations generally increased over time in the pelletized and decreased over time in the finely ground treatment, confirming the slow-release property of pelletized CG that has been previously reported. The results of this study provide valuable insight regarding struvite-P behavior in various soils and provide further supporting evidence for the utilization of struvite as a potential alternative, sustainable fertilizer-P source.
文摘Reaction crystallization of struvite in water solutions containing 0.20 mass % of phosphate(V) ions by magnesium and ammonium ions addition was investigated experimentally. Process was carried out in DTM type crystallizer with liquid jet pump device in 298 K assuming stoichiometric conditions. Struvite crystals of mean size Lm 5.2-23.0 μm were produced depending on pH (9-11) and mean residence time of suspension in a crystallizer τ (900-3600 s). Under these conditions linear growth rate of struvite crystals (SIG MSMPR kinetic model) decreased 2-time with the increase in pH and 3-time with the elongation of mean residence time of crystal suspension from 7.11×10-9 m/s (pH 9, τ900 s) to 1.65×10-9 m/s (pH 11, τ3600 s). Nucleation rate varied within the 7.9×108-1.8×1010 1/(sm3) limits. Struvite product of maximal linear size exceeded 100 μm with 10 vol. % of < 3 μm fraction corresponded to pH 9 and τ3600 s.
文摘Phosphate (V) ions were continuously removed from synthetic wastewater containing inorganic impurities using magnesium and ammonium ions. The product was magnesium ammonium phosphate (V) hexahydrate, struvite, MgNH4PO4 × 6H2O. Research ran in stoichiometric conditions in DT MSMPR type crystallizer with internal circulation of suspension. Increase in process environment pH from 9 to 11 resulted in 3-time decrease of mean struvite crystals size (from 40.1 to12.6mm). Elongation of mean residence time of suspension in a crystallizer up to 3600 s resulted in improvement of the product quality. Mean size of struvite crystals enlarged up to50.2mm. Based on kinetic calculations results (SIG MSMPR model) it was concluded, that linear struvite crystal growth rate varied within 5.04 × 10–9 – 1.69 × 10–8 m/s range, whereas nucleation rate within 1.4 × 107 – 1.7 × 1010 1/(s m3) limits. In solid product, besides struvite, also all impurities present in wastewater were identified analytically as hydroxides, phosphates and other salts.
文摘Struvite (MgNH4PO46H2O) crystals were produced by infection associated with urea generating organ- isms.The aim of this study is to examine the interactions between the enzyme urease and two inhibitors, the first is an inhibitor monoatomic: Aluminum and the second is a polyatomic: Citrate by the methods of molecular modeling: molecular mechanics, molecular dynamics (MM+, AMBER) and molecular docking (FleX). Supersaturated solutions induce crystallization by nucleation and subsequent crystal growth .The mechanisms for the formation of calcium phosphate urinary stones are still not understood. Chemicals prod- uct has been studied extensively as inhibitors and has been observed in the attachment of crystals to in vitro study. As a complement we have using an electron microscope Hitachi TM1000, we examined specimens of crystals struvite. The various figures show a set of grains of sizes of the order of 20 μm. The majority of these particles present regular forms. This suggests the crystal growing. This result to an alteration in the expression of these faces and the development of a characteristic architectural struvite morphology. Similar changes were observed in the presence of identical concentrations of citrate acid, and Alluminuium, emphasizing the unique interaction of phosphocitrate with the struvite crystal.