针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对...针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。展开更多
对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类...对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。展开更多
原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先...原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先对图像建立尺度金字塔,然后使用四叉树划分图像并限制划分深度。用加速分段测试的特征(features from accelerated segment test,FAST)算法通过多个检测阈值对划分后的图像进行特征点检测。检测完毕后,根据划分出的子块总数和提取的特征点总数对划分出来的各个子块设置自适应阈值,提取ORB特征点。操作完成后通过采取非极大值抑制的方法筛选最佳特征点,并使用改良后的二元鲁棒独立基本特征(binary robust independent elementary features,BRIEF)算法计算得出特征点的描述符,最后进行特征点匹配。实验结果表明,本文算法提取的图像特征点较原ORB算法提取的效果在均匀程度上得到了明显地提升,冗余重叠的特征点数量减少,且在特征点提取速度方面较原ORB算法的提取速度提高了30%以上。展开更多
文摘针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。
文摘对bag of features(BOF)算法进行研究与改进,并将其应用到图像识别和分类中。针对传统BOF算法执行效率低以及分类精度不够高等缺陷,提出一种结合SURF(speeded up robust feature)与空间金字塔匹配原理的优化方法相结合的图像识别与分类算法。SURF算法可提高执行效率,而空间金字塔匹配原理的优化方法可提高分类精度。首先对分类图像应用SURF算法提取特征描述符并生成视觉词典,该算法提取的视觉词典能更有效地表示图像特征,且能应对多变的尺度;然后应用空间金字塔匹配原理对图像采用视觉词典的直方图表示,进一步提高分类的准确度;最后利用LIBSVM分类器进行分类。在Graz,Caltech-256和Pascal VOC 2012这3个数据集中进行实验测试。研究结果表明:该方法与传统的BOF算法相比提高了执行效率和分类精度。在数据实验中通过与近几年一些相关研究工作在分类准确率方面进行对比,该方法具有很大的优越性。
文摘原ORB(oriented FAST and rotated BRIEF)算法提取的图像特征点经常出现“扎堆重叠”现象,其分布较为密集且缺乏尺度不变性,因而容易造成图像特征点误匹配的问题。为了解决该问题,提出了一种基于四叉树划分的图像特征点提取算法。首先对图像建立尺度金字塔,然后使用四叉树划分图像并限制划分深度。用加速分段测试的特征(features from accelerated segment test,FAST)算法通过多个检测阈值对划分后的图像进行特征点检测。检测完毕后,根据划分出的子块总数和提取的特征点总数对划分出来的各个子块设置自适应阈值,提取ORB特征点。操作完成后通过采取非极大值抑制的方法筛选最佳特征点,并使用改良后的二元鲁棒独立基本特征(binary robust independent elementary features,BRIEF)算法计算得出特征点的描述符,最后进行特征点匹配。实验结果表明,本文算法提取的图像特征点较原ORB算法提取的效果在均匀程度上得到了明显地提升,冗余重叠的特征点数量减少,且在特征点提取速度方面较原ORB算法的提取速度提高了30%以上。