期刊文献+
共找到1,549篇文章
< 1 2 78 >
每页显示 20 50 100
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
1
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
下载PDF
Application of Feature, Event, and Process Methods to Leakage Scenario Development for Offshore CO_(2) Geological Storage
2
作者 Qiang Liu Yanzun Li +2 位作者 Meng Jing Qi Li Guizhen Liu 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期608-616,共9页
Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substant... Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts. 展开更多
关键词 Offshore CO_(2)geological storage features events and processes Scenario development Interaction matrix Risk matrix assessment
下载PDF
Feature Extraction and Recognition for Rolling Element Bearing Fault Utilizing Short-Time Fourier Transform and Non-negative Matrix Factorization 被引量:24
3
作者 GAO Huizhong LIANG Lin +1 位作者 CHEN Xiaoguang XU Guanghua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期96-105,共10页
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar... Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space. 展开更多
关键词 time-frequency distribution non-negative matrix factorization rolling element bearing feature extraction
下载PDF
Effects of Matrix Features on Stress Transfer of Short Fiber Composites
4
作者 康国政 高庆 刘世楷 《Journal of Modern Transportation》 1998年第2期59-64,共6页
By employing the elastic and elastic plastic finite element method(FEM), the effects of matrix feature on the stress transfer mechanisms of short fiber composites are studied. In the calculation, the variations in ma... By employing the elastic and elastic plastic finite element method(FEM), the effects of matrix feature on the stress transfer mechanisms of short fiber composites are studied. In the calculation, the variations in matrix modulus, yield strength and hardening modulus are considered. It is concluded that large deformation of matrix is harmful to the improvement of the mechanical performances of the composites. 展开更多
关键词 short fiber composites matrix features stress transfer FEM
下载PDF
A Combination of Feature Selection and Co-occurrence Matrix Methods for Leukocyte Recognition System
5
作者 Li Na Arlends Chris Bagus Mulyawan 《Journal of Software Engineering and Applications》 2012年第12期101-106,共6页
A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes... A leukocyte recognition system, as part of a differential blood counter system, is very important in hematology field. In this paper, the propose system aims to automatically classify the white blood cells (leukocytes) on a given microscopic image. The classifications of leukocytes are performed based on the combination of color and texture features of the blood cell images. The developed system classifies the leukocytes in one of the five categories (neutrophils, eosinophils, basophils, lymphocytes, and monocytes). In the preprocessing stage, the system starts with converting the microscopic images from Red Green Blue (RGB) color space to Hue Saturation Value (HSV) color space. Next, the system splits the Hue and Saturation features from the Value feature. For both Hue and Saturation features, the system processes their color information using the Feature Selection method and the Window Cropping method;while the Value feature is processed by its texture information using the Co-occurrence matrix method. The final recognition stage is performed using the Euclidean distance method. The combination of the Feature Selection and Co-occurrence Matrix methods gives the best overall recognition accuracies for classifying leukocyte images. 展开更多
关键词 LEUKOCYTE recognition WHITE BLOOD cell MICROSCOPIC image feature selection CO-OCCURRENCE matrix
下载PDF
Coal–rock interface detection on the basis of image texture features 被引量:20
6
作者 Sun Jiping Su Bo 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期681-687,共7页
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence... Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram. 展开更多
关键词 Coal–rock interface detection TEXTURE Gray level co-occurrence matrix feature selection Fisher discriminant method Cross-validation
下载PDF
Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods 被引量:6
7
作者 Chao Chen Danyang Liu +4 位作者 Siyan Deng Lixiang Zhong Serene Hay Yee Chan Shuzhou Li Huey Hoon Hng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期364-375,I0009,共13页
A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the develo... A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science. 展开更多
关键词 Small database machine learning Energetic materials screening Spatial matrix featurization method Crystal density Formation enthalpy n-Body interactions
下载PDF
Feature matching based on geometric constraints in weakly calibrated stereo views of curved scenes 被引量:1
8
作者 Bian Houqin Su Jianbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期562-570,共9页
The identification of the correspondences of points of views is an important task. A new feature matching algorithm for weakly calibrated stereo images of curved scenes is proposed, based on mere geometric constraints... The identification of the correspondences of points of views is an important task. A new feature matching algorithm for weakly calibrated stereo images of curved scenes is proposed, based on mere geometric constraints. After initial correspondences are built via the epipolar constraint, many point-to-point image mappings called homographies are set up to predict the matching position for feature points. To refine the predictions and reject false correspondences, four schemes are proposed. Extensive experiments on simulated data as well as on real images of scenes of variant depths show that the proposed method is effective and robust. 展开更多
关键词 feature correspondence epipolar geometry fundamental matrix homography.
下载PDF
Ensemble feature selection integrating elitist roles and quantum game model 被引量:1
9
作者 Weiping Ding Jiandong Wang +1 位作者 Zhijin Guan Quan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期584-594,共11页
To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel eli... To accelerate the selection process of feature subsets in the rough set theory (RST), an ensemble elitist roles based quantum game (EERQG) algorithm is proposed for feature selec- tion. Firstly, the multilevel elitist roles based dynamics equilibrium strategy is established, and both immigration and emigration of elitists are able to be self-adaptive to balance between exploration and exploitation for feature selection. Secondly, the utility matrix of trust margins is introduced to the model of multilevel elitist roles to enhance various elitist roles' performance of searching the optimal feature subsets, and the win-win utility solutions for feature selec- tion can be attained. Meanwhile, a novel ensemble quantum game strategy is designed as an intriguing exhibiting structure to perfect the dynamics equilibrium of multilevel elitist roles. Finally, the en- semble manner of multilevel elitist roles is employed to achieve the global minimal feature subset, which will greatly improve the fea- sibility and effectiveness. Experiment results show the proposed EERQG algorithm has superiority compared to the existing feature selection algorithms. 展开更多
关键词 ensemble quantum game utility matrix of trust mar-gin dynamics equilibrium strategy multilevel elitist role feature selection and classification.
下载PDF
FAST FEATURE RANKING AND ITS APPLICATION TO FACE RECOGNITION 被引量:1
10
作者 潘锋 王建东 +2 位作者 宋广为 牛奔 顾其威 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第4期389-396,共8页
A fast feature ranking algorithm for classification in the presence of high dimensionahty and small sample size is proposed. The basic idea is that the important features force the data points of the same class to mai... A fast feature ranking algorithm for classification in the presence of high dimensionahty and small sample size is proposed. The basic idea is that the important features force the data points of the same class to maintain their intrinsic neighbor relations, whereas neighboring points of different classes are no longer to stick to one an- other. Applying this assumption, an optimization problem weighting each feature is derived. The algorithm does not involve the dense matrix eigen-decomposition which can be computationally expensive in time. Extensive exper- iments are conducted to validate the significance of selected features using the Yale, Extended YaleB and PIE data- sets. The thorough evaluation shows that, using one-nearest neighbor classifier, the recognition rates using 100-- 500 leading features selected by the algorithm distinctively outperform those with features selected by the baseline feature selection algorithms, while using support vector machine features selected by the algorithm show less prominent improvement. Moreover, the experiments demonstrate that the proposed algorithm is particularly effi- cient for multi-class face recognition problem. 展开更多
关键词 feature selection feature ranking manifold learning Laplacian matrix
下载PDF
Multi-Domain Collaborative Recommendation with Feature Selection 被引量:3
11
作者 Lizhen Liu Junjun Cui +1 位作者 Wei Song Hanshi Wang 《China Communications》 SCIE CSCD 2017年第8期137-148,共12页
Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domai... Collaborative f iltering, as one of the most popular techniques, plays an important role in recommendation systems. However,when the user-item rating matrix is sparse,its performance will be degenerate. Recently,domain-specific recommendation approaches have been developed to address this problem.The basic idea is to partition the users and items into overlapping domains, and then perform recommendation in each domain independently. Here, a domain means a group of users having similar preference to a group of products. However, these domain-specific methods consisting of two sequential steps ignore the mutual benefi t of domain segmentation and recommendation. Hence, a unified framework is presented to simultaneously realize recommendation and make use of the domain information underlying the rating matrix in this paper. Based on matrix factorization,the proposed model learns both user preferences of multiple domains and preference selection vectors to select relevant features for each group of products. Besides, local context information is utilized from the user-item rating matrix to enhance the new framework.Experimental results on two widely used datasets, e.g., Ciao and Epinions, demonstrate the effectiveness of our proposed model. 展开更多
关键词 collaborative recommendation multi-domain matrix factorization feature selection
下载PDF
Vibration-Based Fault Diagnosis Study on a Hydraulic Brake System Using Fuzzy Logic with Histogram Features
12
作者 Alamelu Manghai T Marimuthu Jegadeeshwaran Rakkiyannan +2 位作者 Lakshmipathi Jakkamputi Sugumaran Vaithiyanathan Sakthivel Gnanasekaran 《Structural Durability & Health Monitoring》 EI 2022年第4期383-396,共14页
The requirement of fault diagnosis in the field of automobiles is growing higher day by day.The reliability of human resources for the fault diagnosis is uncertain.Brakes are one of the major critical components in au... The requirement of fault diagnosis in the field of automobiles is growing higher day by day.The reliability of human resources for the fault diagnosis is uncertain.Brakes are one of the major critical components in automobiles that require closer and active observation.This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis.Vibration signals of a rotating element contain dynamic information about its health condition.Hence,the vibration signals were used for the brake fault diagnosis study.The study was carried out on a brake fault diagnosis experimental setup.The vibration signals under different fault conditions were acquired from the setup using an accelerometer.The condition monitoring of the hydraulic brake system using the vibration signal was processed using a machine learning approach.The machine learning approach has three phases,namely,feature extraction,feature selection,and feature classification.Histogram features were extracted from the vibration signals.The prominent features were selected using the decision tree.The selected features were classified using a fuzzy classifier.The histogram features and the fuzzy classifier combination produced maximum classification accuracy than that of the statistical features. 展开更多
关键词 Machine learning histogram features decision tree fuzzy logic membership function confusion matrix
下载PDF
An Approach to Fault Diagnosis of Rotating Machinery Using the Second-Order Statistical Features of Thermal Images and Simplified Fuzzy ARTMAP
13
作者 Faisal Al Thobiani Van Tung Tran Tiedo Tinga 《Engineering(科研)》 2017年第6期524-539,共16页
Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the mach... Thermal image, or thermogram, becomes a new type of signal for machine condition monitoring and fault diagnosis due to the capability to display real-time temperature distribution and possibility to indicate the machine’s operating condition through its temperature. In this paper, an investigation of using the second-order statistical features of thermogram in association with minimum redundancy maximum relevance (mRMR) feature selection and simplified fuzzy ARTMAP (SFAM) classification is conducted for rotating machinery fault diagnosis. The thermograms of different machine conditions are firstly preprocessed for improving the image contrast, removing noise, and cropping to obtain the regions of interest (ROIs). Then, an enhanced algorithm based on bi-dimensional empirical mode decomposition is implemented to further increase the quality of ROIs before the second-order statistical features are extracted from their gray-level co-occurrence matrix (GLCM). The highly relevant features to the machine condition are selected from the total feature set by mRMR and are fed into SFAM to accomplish the fault diagnosis. In order to verify this investigation, the thermograms acquired from different conditions of a fault simulator including normal, misalignment, faulty bearing, and mass unbalance are used. This investigation also provides a comparative study of SFAM and other traditional methods such as back-propagation and probabilistic neural networks. The results show that the second-order statistical features used in this framework can provide a plausible accuracy in fault diagnosis of rotating machinery. 展开更多
关键词 Thermal Images SECOND-ORDER Statistical features Gray-Level CO-OCCURRENCE matrix Minimum REDUNDANCY Maximum Relevance Rotating Machinery Fault Diagnosis Simplified Fuzzy ARTMAP
下载PDF
加权信息量支持下融合InSAR形变特征的滑坡易发性评价
14
作者 肖海平 万俊辉 +2 位作者 陈兰兰 范永超 陈磊 《大地测量与地球动力学》 CSCD 北大核心 2024年第7期718-724,共7页
使用SBAS-InSAR处理六盘水市水城区2018-07~2019-08共69景Sentinel-1A卫星影像,获取地表形变作为动态评价因子,用于完善传统滑坡易发性评价研究缺乏动态特征数据应用的问题。结果表明,使用10种静态评价因子融合InSAR形变特征数据作为动... 使用SBAS-InSAR处理六盘水市水城区2018-07~2019-08共69景Sentinel-1A卫星影像,获取地表形变作为动态评价因子,用于完善传统滑坡易发性评价研究缺乏动态特征数据应用的问题。结果表明,使用10种静态评价因子融合InSAR形变特征数据作为动态评价因子,在耦合层次分析法与信息量法的加权信息量模型下对比仅使用静态特征数据,ROC曲线下面积分别为0.756 02和0.888 68,模型性能提升约13.3%;再将历史灾害点叠加于2种分区图下检验分区精度,相比于未融入形变特征,融入形变特征可纠正约12.44%的误分类区域,能较好地提升分区的可靠性。 展开更多
关键词 相关性矩阵 静态特征数据 InSAR形变特征数据 加权信息量 滑坡易发性评价
下载PDF
单幅图像局部特征分层模糊挖掘算法仿真
15
作者 牛庆丽 王黎明 《计算机仿真》 2024年第8期195-199,共5页
为了能够深入获得图像纹理特征信息,提高后续数据识别精准度。因此,提出了单幅图像局部特征分层模糊挖掘算法。通过直方图均衡化方法,将图像中灰度值集中到对应灰度等级区域。由不均匀分布向均匀分布状态转换,拓展像素的灰度动态范围。... 为了能够深入获得图像纹理特征信息,提高后续数据识别精准度。因此,提出了单幅图像局部特征分层模糊挖掘算法。通过直方图均衡化方法,将图像中灰度值集中到对应灰度等级区域。由不均匀分布向均匀分布状态转换,拓展像素的灰度动态范围。分析图像局部特征复杂度与差异度,求出相邻模板灰度等级,得到局部复杂性和差异度矩阵,采用Laplace算法对图像局部特征推荐分类,根据推荐级别分层模糊挖掘所选特征,以此实现对单幅图像的局部特征分层模糊挖掘。通过实验证明,所提算法可准确挖掘出图像特征,不同层级纹理信息都完整,且挖掘时间保持在0.25s内。 展开更多
关键词 单幅图像 局部特征 特征分层模糊挖掘 差异度矩阵 局部差异度
下载PDF
RM-RT^(2)NI:融合评论时效与可信近邻影响力的推荐模型
16
作者 韩志耕 周婷 +2 位作者 陈耿 付纯硕 陈健 《计算机科学》 CSCD 北大核心 2024年第S01期700-706,共7页
基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近... 基于矩阵分解的推荐模型虽然能够处理高维评分数据,但容易遭受评分数据稀疏性的困扰。基于评分和评论的推荐模型通过外加隐藏在评论中的用户偏好与物品属性信息,缓解了评分数据的稀疏性,但在特征提取时大多没有关注评论时效性和可信近邻影响力,无法获得更丰富的用户和物品特征。为进一步提高推荐精度,提出了融合评论时效与可信近邻影响力的推荐模型RM-RT^(2)NI。基于评分矩阵,该模型使用矩阵分解提取了用户偏好和物品属性的浅层特征,利用云模型和修正的用户相似度评估模型和新构建的信度评估模型提取出可信近邻影响力;基于评论文本,该模型利用BERT模型获得每条评论的隐表达,利用双向GRU提取评论间的联系,利用新构建的融合时间因子的注意力机制识别各评论的时效贡献度,以获取用户和物品的深层特征。在此基础上,将用户浅层特征、深层特征以及可信近邻影响力特征融合成用户特征,将物品浅层特征和深层特征融合成物品特征,并将它们输入全连接神经网络以预测用户-物品评分。在5组公开数据集上对RM-RM-RT^(2)NI的推荐性能进行了实验评估,结果显示,与7个基线模型相比,RM-RT^(2)NI具有更高的评分预测精度,且RMSE平均降低了3.0657%。 展开更多
关键词 推荐模型 评分矩阵 评论文本 评论时效 可信近邻影响力 多特征融合
下载PDF
基于Relief算法的不平衡数据分类分级算法仿真
17
作者 梁丹凝 梁坚 《计算机仿真》 2024年第6期477-480,497,共5页
不平衡数据的分类分级是保证大数据技术高效使用过程中不可缺少的环节,但分类分级过程易受数据属性、冗余性、不均衡性等问题的干扰。为解决上述问题,提出不平衡数据朴素贝叶斯分类分级算法。采用合成少数类过采样技术降低数据的不平衡... 不平衡数据的分类分级是保证大数据技术高效使用过程中不可缺少的环节,但分类分级过程易受数据属性、冗余性、不均衡性等问题的干扰。为解决上述问题,提出不平衡数据朴素贝叶斯分类分级算法。采用合成少数类过采样技术降低数据的不平衡度,通过距离相关系数与最大信息系数完成不平衡数据的特征选择与筛选,采用Relief算法对筛选的特征做权重分配,并输入到朴素贝叶斯模型中实现分类,再结合动态阈值算法完成数据的分级。实验结果表明,所提算法的运行时间短、分类精度高,能够有效提升数据处理效果。 展开更多
关键词 不平衡度 距离相关系数 特征矩阵 权重分配 后验概率
下载PDF
基于机器视觉的汽车压装衬套偏转角度测量
18
作者 张玉杰 谢兴龙 《组合机床与自动化加工技术》 北大核心 2024年第9期118-122,127,共6页
衬套安装的角度测量对于确保压装过程中汽车悬架与衬套的准确组装十分重要,现有的单目测量方法由于存在相机安装环境受限、测量准确率低的缺点而难以广泛应用。为提高衬套偏转角度的测量准确性,提出了一种基于特征匹配与径向基神经网络... 衬套安装的角度测量对于确保压装过程中汽车悬架与衬套的准确组装十分重要,现有的单目测量方法由于存在相机安装环境受限、测量准确率低的缺点而难以广泛应用。为提高衬套偏转角度的测量准确性,提出了一种基于特征匹配与径向基神经网络的衬套偏转角度测量方法。采用Hessian矩阵优化ORB算法,剔除误匹配对,提高ORB算法匹配性能;采用基准模板匹配策略,解决相机斜视状态下图像特征被遮挡导致的无法匹配问题,并将采集图像的特征点转换至基准模板上;通过引入径向基函数神经网络进行偏转角度软测量,拟合特征点与偏转角度的非线性关系,提高衬套偏转角度测量的精度。实验结果表明,所研究方法可以有效进行偏转角度测量,最大平均相对误差为2.72%,满足衬套偏转角度测量要求,在汽车生产过程中有一定的应用价值。 展开更多
关键词 特征匹配 ORB 单应性变换 HESSIAN矩阵 径向基神经网络
下载PDF
基于多特征融合自编码器的无监督地震相分类研究 被引量:1
19
作者 王倩楠 王治国 +2 位作者 杨阳 朱剑兵 高静怀 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第1期370-378,共9页
地震相分类是地震数据解释中的一个重要步骤,是地震数据与沉积相的连接工具.为了提高地震相分类精度和减少对有限人工标签的依赖,本文提出了一种基于多特征融合自编码器的无监督地震相分类方法.首先,提出了一种混合卷积和变分编码的多... 地震相分类是地震数据解释中的一个重要步骤,是地震数据与沉积相的连接工具.为了提高地震相分类精度和减少对有限人工标签的依赖,本文提出了一种基于多特征融合自编码器的无监督地震相分类方法.首先,提出了一种混合卷积和变分编码的多特征融合自编码器,实现了地震数据中表征地震相的大量隐含特征提取.其次基于非负矩阵分解和K均值聚类实现了主特征分量分解和地震相聚类.实际地震数据应用结果和指标分析表明,本文方法提取的隐含特征趋于正态分布,且主特征分量中蕴含了不同地震相类别的响应,从而可以获得更准确的地震相分类结果.在渤海湾盆地东营凹陷古近系沙河街组湖相沉积中,清晰划分出了六类沉积微相的边界,有利于揭示三角洲沉积环境演变. 展开更多
关键词 地震相分类 多特征融合自编码器 卷积自编码器 变分自编码器 非负矩阵分解
下载PDF
细胞外基质金属蛋白酶诱导因子、基质金属蛋白酶-9和赖氨酸去甲基化酶6B在浸润性乳腺癌组织中的表达及其病理诊断价值 被引量:1
20
作者 姜黄 郑丽华 +5 位作者 徐小艳 王建君 徐宪伟 王娜 邢晨菊 鲁显宇 《新乡医学院学报》 CAS 2024年第2期143-150,共8页
目的探讨浸润性乳腺癌组织中细胞外基质金属蛋白酶诱导因子(EMMPRIN)、基质金属蛋白酶-9(MMP-9)和赖氨酸去甲基化酶6B(KDM6B)蛋白的表达及其与临床病理特征的关系,并分析3种蛋白的相关性及其在浸润性乳腺癌病理诊断中的价值。方法选择2... 目的探讨浸润性乳腺癌组织中细胞外基质金属蛋白酶诱导因子(EMMPRIN)、基质金属蛋白酶-9(MMP-9)和赖氨酸去甲基化酶6B(KDM6B)蛋白的表达及其与临床病理特征的关系,并分析3种蛋白的相关性及其在浸润性乳腺癌病理诊断中的价值。方法选择2014年1月至2017年12月河南中医药大学第五临床医学院/郑州人民医院病理科保存的124例浸润性乳腺癌患者的手术切除活检标本为研究对象,另选取同期保存的低级别导管内癌组织标本20例、高级别导管内癌组织标本27例、距离浸润性乳腺癌>1 cm处癌旁组织标本22例作为对照组。采用免疫组织化学法检测乳腺癌旁组织、低级别导管内癌、高级别导管内癌及浸润性乳腺癌组织中EMMPRIN、MMP-9和KDM6B蛋白的表达。分析EMMPRIN、MMP-9和KDM6B蛋白的相对表达量与浸润性乳腺癌临床病理特征的关系;采用Spearman法分析浸润性乳腺癌组织中EMMPRIN、MMP-9、KDM6B蛋白的相关性,受试者操作特征(ROC)曲线评估EMMPRIN、MMP-9和KDM6B蛋白对浸润性乳腺癌的诊断价值。结果高级别导管内癌和浸润性乳腺癌组织中EMMPRIN、MMP-9蛋白的相对表达量显著高于乳腺癌旁组织和低级别导管内癌组织(P<0.05),KDM6B蛋白的相对表达量显著低于癌旁组织和低级别导管内癌组织(P<0.05);浸润性乳腺癌组织中EMMPRIN、MMP-9蛋白的相对表达量显著高于高级别导管内癌组织(P<0.05),KDM6B蛋白的相对表达量显著低于高级别导管内癌组织(P<0.05);癌旁组织与低级别导管内癌组织中EMMPRIN、MMP-9和KDM6B蛋白的相对表达量比较差异无统计学意义(P>0.05)。EMMPRIN、KDM6B蛋白相对表达量与浸润性乳腺癌患者的年龄、肿瘤部位和肿瘤直径无关(P>0.05),MMP-9蛋白相对表达量与浸润性乳腺癌患者的年龄和肿瘤部位无关(P>0.05)。EMMPRIN、MMP-9和KDM6B蛋白的相对表达量与浸润性乳腺癌的世界卫生组织(WHO)分级、淋巴结转移、TNM分期有关(P<0.05),MMP-9蛋白的相对表达量与浸润性乳腺癌的肿瘤直径有关(P<0.05)。浸润性乳腺癌WHO分级Ⅰ级、Ⅱ级、Ⅲ级中,EMMPRIN、MMP-9蛋白的相对表达量依次升高,KDM6B蛋白的相对表达量依次降低(P<0.05);浸润性乳腺癌淋巴结有转移组EMMPRIN、MMP-9蛋白的相对表达量显著高于无淋巴结转移组(P<0.05),KDM6B蛋白的相对表达量显著低于无淋巴结转移组(P<0.05);TNM分期Ⅲ~Ⅳ期组EMMPRIN、MMP-9蛋白的相对表达量显著高于Ⅰ~Ⅱ期组(P<0.05),KDM6B蛋白的相对表达量显著低于Ⅰ~Ⅱ期组(P<0.05)。在浸润性乳腺癌肿瘤直径≤2 cm、2~5 cm、>5 cm组中MMP-9蛋白的相对表达量依次升高(P<0.05)。Spearman相关性分析显示,浸润性乳腺癌组织中EMMPRIN与MMP-9蛋白的表达呈显著正相关(r=0.990,P=0.000),EMMPRIN与KDM6B蛋白的表达呈显著负相关(r=-0.606,P=0.000),MMP-9与KDM6B蛋白的表达呈显著负相关(r=-0.612,P=0.000)。ROC曲线分析显示,EMMPRIN蛋白诊断浸润性乳腺癌的曲线下面积(AUC)为0.875[95%置信区间(CI):0.823~0.926,P<0.05],最佳界值为10.043,敏感度为79.0%,特异度为76.8%;MMP-9蛋白诊断浸润性乳腺癌的AUC为0.863(95%CI:0.808~0.917,P<0.05),最佳界值为10.070,敏感度为74.2%,特异度为76.8%;KDM6B蛋白诊断浸润性乳腺癌的AUC为0.267(95%CI:0.196~0.338,P<0.05),最佳界值为11.003,敏感度为71.0%,特异度为98.6%。结论EMMPRIN、MMP-9和KDM6B蛋白与浸润性乳腺癌的发生发展有关,检测EMMPRIN、MMP-9和KDM6B蛋白的表达有助于浸润性乳腺癌的病理诊断及其浸润转移的临床判断。 展开更多
关键词 浸润性乳腺癌 细胞外基质金属蛋白酶诱导因子 基质金属蛋白酶-9 赖氨酸去甲基化酶6B 临床病理特征 诊断价值
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部