In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous ter...In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.展开更多
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ...On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.展开更多
On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We in...On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.展开更多
Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify th...Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify the model. To analyze the effect of runoff on slope stability, this study simultaneously simulated the effects of surface runoff and rainfall infiltration on bank slopes in the Three Gorges Reservoir Area. A shallow slope failure method that can be used to analyze runoff was proposed based on the modified Green-Ampt model, the simplified Saint-Venant model, and the infinite slope model. In this model, the modified Green–Ampt model was used to estimate the rainfall infiltration capacity and the wetting front depth. The eight-flow(D8) method and the simplified Saint-Venant model were selected to estimate the distribution of runoff. By considering the wetting front depth as the slip surface depth, the factor of safety of the slope could be determined using the infinite slope stability model. A comparison of the different models reveals that runoff can escalate the instability of certain slopes, causing stable slopes to become unstable. Comparison of the unstable areas obtained from the simulation with the actual landslide sites shows that the model proposed in this study can successfully predict landslides at these sites. The slope instability assessment model proposed in this study offers an alternative approach for estimating high-risk areas in large mountainous regions.展开更多
The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of l...The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model(DEM) on the results are statistically and analytically analyzed. Furthermore, two highrisk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis,the following conclusions were derived:(1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km~2, threatening 414 people and property of about 55.87 million Yuan.(2)The landslides in the study area easily occur in the <400 m elevation range;the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults(0–200 m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads.(3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region.(4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:(1)damage to the leading edge and stress release,(2)continuous creep and cracking,(3)rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerat...High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.展开更多
Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This...Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.展开更多
Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid i...Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid identification of landslides is important for disaster prevention and control;however,currently,landslide identification relies mainly on the manual interpretation of remote sensing images.Manual interpretation and feature recognition methods are time-consuming,labor-intensive,and challenging when confronted with complex scenarios.Consequently,automatic landslide recognition has emerged as a pivotal avenue for future development.In this study,a dataset comprising 2000 landslide images was constructed using open-source remote sensing images and datasets.The YOLOv7 model was enhanced using data augmentation algorithms and attention mechanisms.Three optimization models were formulated to realize automatic landslide recognition.The findings demonstrate the commendable performance of the optimized model in automatic landslide recognition,achieving a peak accuracy of 95.92%.Subsequently,the optimized model was applied to regional landslide identification,co-seismic landslide identification,and landslide recognition at various scales,all of which showed robust recognition capabilities.Nevertheless,the model exhibits limitations in detecting small targets,indicating areas for refining the deep-learning algorithms.The results of this research offer valuable technical support for the swift identification,prevention,and mitigation of landslide disasters.展开更多
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides...With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks.展开更多
Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation ...Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks.展开更多
This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-In SAR)technique and Google Earth optical remote sensing images to analyze the area within 20 km around the epicenter ...This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-In SAR)technique and Google Earth optical remote sensing images to analyze the area within 20 km around the epicenter of a M 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 m and 14.1 m for the failure surfaces, with volumes of 9.02 × 10~4m~3and 25.5 ×10~4m~3, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 m, the area of the final accumulation area is 1.75 × 10~4m~2, and the farthest movement distance is 1124 m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 m, the area of the final accumulation area is 7.89 × 10~4m~2, and the farthest movement distance is 742 m.展开更多
Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbaniz...Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences.展开更多
Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential lands...Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.展开更多
Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(includi...Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China.展开更多
This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plate...This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation.展开更多
Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively a...Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.展开更多
Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study ...Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.展开更多
基金supported by National Natural Science Foundation of China (42277136)Natural Science Research Project of Anhui Educational Committee (2023AH030041)National Key Research and Development Program of China (2021YFB3901205)。
文摘In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.
基金supported by the National Natural Science Foundation of China project (No. 42372339)the China Geological Survey Project (Nos. DD20221816, DD20190319)。
文摘On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.
基金financially supported by the National Key R&D Program of China (No. 2022YFF0800604)the National Natural Science Foundation of China (No. 42207224)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z021)
文摘On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.
基金supported by the National Natural Science Foundation of China (U2240221)the Sichuan Youth Science and Technology Innovation Research Team Project (2020JDTD0006)。
文摘Rainwater runoff that does not infiltrate the soil during heavy rainfall may increase slope instability. The effect of runoff is usually neglected in conventional rainfall-induced slope failure analysis to simplify the model. To analyze the effect of runoff on slope stability, this study simultaneously simulated the effects of surface runoff and rainfall infiltration on bank slopes in the Three Gorges Reservoir Area. A shallow slope failure method that can be used to analyze runoff was proposed based on the modified Green-Ampt model, the simplified Saint-Venant model, and the infinite slope model. In this model, the modified Green–Ampt model was used to estimate the rainfall infiltration capacity and the wetting front depth. The eight-flow(D8) method and the simplified Saint-Venant model were selected to estimate the distribution of runoff. By considering the wetting front depth as the slip surface depth, the factor of safety of the slope could be determined using the infinite slope stability model. A comparison of the different models reveals that runoff can escalate the instability of certain slopes, causing stable slopes to become unstable. Comparison of the unstable areas obtained from the simulation with the actual landslide sites shows that the model proposed in this study can successfully predict landslides at these sites. The slope instability assessment model proposed in this study offers an alternative approach for estimating high-risk areas in large mountainous regions.
基金financially supported by the National Key Research and Development Program of China(2022YFC3003400)National Natural Science Foundation of China(No. 41402254)Department of Science and Technology of Shaanxi Province(No. 2019ZDLSF07-0701, 2022SF-445)。
文摘The geological hazards of landslides in Hanwang Town, Ziyang County, Ankang City, Shaanxi Province, have emerged. Yet, the current understanding of the spatial distribution characteristics and influencing factors of landslides in this area remains unclear. Combining the results of remote sensing interpretation and field investigation, seven influencing factors, namely, elevation, slope direction, slope gradient, distance from rivers, distance from faults, engineering geologic lithology, and distance from roads, are selected for the study. The distribution characteristics of landslides in each influencing factor and the influence of the resolution of the Digital Elevation Model(DEM) on the results are statistically and analytically analyzed. Furthermore, two highrisk landslides within the study area were subjected to comprehensive analysis, integrating the findings from drilling and other field investigations in order to examine their deformation mechanisms. Based on this analysis,the following conclusions were derived:(1) 34 landslides in the study area, mainly small earth landslides, with a distribution density of 0.42/km~2, threatening 414 people and property of about 55.87 million Yuan.(2)The landslides in the study area easily occur in the <400 m elevation range;the landslides are developed in all slope directions, the gradient is mainly concentrated in the range of 10°–40°, the distribution density of the landslides is higher in the closer distance from the river and the faults(0–200 m), the landslide-prone strata are mainly the softer and weaker metamorphic rocks, and the landslides are mainly around roads.(3) The resolution of the DEM should be selected based on the specific conditions of the study area, the requirements of the investigation, and the scale of the landslide. Opting for an appropriate DEM resolution is advantageous for understanding the patterns of landslides and conducting risk assessments in the region.(4) The Zhengjiabian landslide is a traction Landslide. The landslide body is a binary structure of gravel soil and slate weathering layer, and the damage process can be divided into three stages:(1)damage to the leading edge and stress release,(2)continuous creep and cracking,(3)rainfall infiltration and damage. The predominant slope material in the Brickyard landslide comprises clay, and the landslide is triggered by a combination of the traction effect resulting from the excavation at the slope's base and the nudging effect caused by the stacking load of the brick factory. Additionally, the Brickyard landslide exhibits persistent creep deformation. The study results provide a scientific basis for disaster prevention and mitigation in the Hanwang Township area.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
基金financed by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(No.SKLGP2023K022)the Natural Science Foundation of Hubei Province(No.2022CFA011).
文摘High-speed sliding often leads to catastrophic landslides,many of which,in the initial sliding phase before disintegration,experience a friction-induced thermal pressurization effect in the bottom shear band,accelerating the movement of the overlying sliding mass.To quantitatively investigate this complex multiphysical phenomenon,we established a set of equations that describe the variations in temperature and excess pore pressure within the shear band,as well as the conservation of momentum equation for the overlying sliding mass.With a simplified landslide model,we investigated the variations of temperature and excess pore pressure within the shear band and their impacts on the velocity of the overlying sliding mass.On this basis,we studied the impact of seven key parameters on the maximum temperature and excess pore pressure in the shear band,as well as the impact on the velocity of the overlying sliding mass.The simulation results of the standard model show that the temperature and excess pore pressure in the shear band are significantly higher than those in the adjacent areas,and reach the maximum values in the center.Within a few seconds after the start,the maximum excess pore pressure in the shear zone is close to the initial stress,and the shear strength loss rate exceeds 90%.The thermal pressurization mechanism significantly increases the velocity of the overlying sliding mass.The results of parameter sensitivity analysis show that the thermal expansion coefficient has the most significant impact on the temperature and excess pore pressure in the shear band,and the sliding surface dip angle has the most significant impact on the velocity of the overlying sliding mass.The results of this study are of great significance for clarifying the mechanism of thermal pressurization-induced high-speed sliding.
基金jointly supported by the projects of the China Geological Survey(DD20230092,DD20201119)。
文摘Catastrophic geological disasters frequently occur on slopes with obliquely inclined bedding structures(also referred to as obliquely inclined bedding slopes),where the apparent dip sliding is not readily visible.This phenomenon has become a focal point in landslide research.Yet,there is a lack of studies on the failure modes and mechanisms of hidden,steep obliquely inclined bedding slopes.This study investigated the Shanyang landslide in Shaanxi Province,China.Using field investigations,laboratory tests of geotechnical parameters,and the 3DEC software,this study developed a numerical model of the landslide to analyze the failure process of such slopes.The findings indicate that the Shanyang landslide primarily crept along a weak interlayer under the action of gravity.The landslide,initially following a dip angle with the support of a stable inclined rock mass,shifted direction under the influence of argillization in the weak interlayer,moving towards the apparent dip angle.The slide resistance effect of the karstic dissolution zone was increasingly significant during this process,with lateral friction being the primary resistance force.A reduction in the lateral friction due to karstic dissolution made the apparent dip sliding characteristics of the Shanyang landslide more pronounced.Notably,deformations such as bending and uplift at the slope’s foot suggest that the main slide resistance shifts from lateral friction within the karstic dissolution zone to the slope foot’s resistance force,leading to the eventual buckling failure of the landslide.This study unveils a novel failure mode of apparent dip creep-buckling in the Shanyang landslide,highlighting the critical role of lateral friction from the karstic dissolution zone in its failure mechanism.These insights offer a valuable reference for mitigating risks and preventing disasters related to obliquely inclined bedding landslides.
基金The authors sincerely appreciate the valuable comments from the anonymous reviewers.The team of Jishunping from Wuhan University is acknowledged for supplying open-source remote sensing data.This research was supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0904)the National Natural Science Foundation of China(Grant No.U22A20597).
文摘Landslide disasters comprise the majority of geological incidents on slopes,posing severe threats to the safety of human lives and property while exerting a significant impact on the geological environment.The rapid identification of landslides is important for disaster prevention and control;however,currently,landslide identification relies mainly on the manual interpretation of remote sensing images.Manual interpretation and feature recognition methods are time-consuming,labor-intensive,and challenging when confronted with complex scenarios.Consequently,automatic landslide recognition has emerged as a pivotal avenue for future development.In this study,a dataset comprising 2000 landslide images was constructed using open-source remote sensing images and datasets.The YOLOv7 model was enhanced using data augmentation algorithms and attention mechanisms.Three optimization models were formulated to realize automatic landslide recognition.The findings demonstrate the commendable performance of the optimized model in automatic landslide recognition,achieving a peak accuracy of 95.92%.Subsequently,the optimized model was applied to regional landslide identification,co-seismic landslide identification,and landslide recognition at various scales,all of which showed robust recognition capabilities.Nevertheless,the model exhibits limitations in detecting small targets,indicating areas for refining the deep-learning algorithms.The results of this research offer valuable technical support for the swift identification,prevention,and mitigation of landslide disasters.
基金funded by Chongqing Natural Science Key Program of China(Grant No.cstc2020jcyj-zdxmX0019)China Geological Survey Program(Grant No.DD20190637/DD20221748).
文摘With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) (2019QZKK0903)the National Natural Science Foundation of China (No. 42071017)+1 种基金the science and technology research program of the Chinese Academy of Sciences' Institute of Mountain Hazards and Environment (No.IMHE-ZDRW-03)the Alliance of International Science Organizations (ANSO) provided funding for a master's degree
文摘Climate warming is constantly causing hydro-meteorological perturbations,especially in high-altitude mountainous regions,which lead to the occurrences of landslides.The impact of climatic variables(i.e.,precipitation and temperature)on the distribution of landslides in the eastern regions of the Himalayas is poorly understood.To address this,the current study analyzes the relationship between the spatial distribution of landslide characteristics and climatic variables from 2013 to 2021.Google Earth Engine(GEE)was employed to make landslide inventories using satellite data.The results show that 2163,6927,and 9601 landslides were heterogeneously distributed across the study area in 2013,2017,and 2021,respectively.The maximum annual temperature was positively correlated with the distribution of landslides,whereas precipitation was found to have a non-significant impact on the landslide distribution.Spatially,most of the landslides occurred in areas with maximum annual precipitation ranging from 800 to 1600 mm and maximum annual temperature above 15℃.However,in certain regions,earthquake disruptions marginally affected the occurrence of landslides.Landslides were highly distributed in areas with elevations ranging between 3000 and 5000 m above sea level,and many landslides occurred near the lower permafrost limit and close to glaciers.The latter indicates that temperature change-induced freeze-thaw action influences landslides in the region.Temperature changes have shown a positive correlation with the number of landslides within elevations,indicating that temperature affects their spatial distribution.Various climate projections suggest that the region will experience further warming,which will increase the likelihood of landslides in the future.Thus,it is crucial to enhance ground observation capabilities and climate datasets to effectively monitor and mitigate landslide risks.
基金supported by the Natural Science Foundation of Gansu Province (22JR5RA326)The geological disaster prevention projects of Gansu Provincial Bureau of Geology and Mineral Resources (2023-2-9)。
文摘This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-In SAR)technique and Google Earth optical remote sensing images to analyze the area within 20 km around the epicenter of a M 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 m and 14.1 m for the failure surfaces, with volumes of 9.02 × 10~4m~3and 25.5 ×10~4m~3, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 m, the area of the final accumulation area is 1.75 × 10~4m~2, and the farthest movement distance is 1124 m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 m, the area of the final accumulation area is 7.89 × 10~4m~2, and the farthest movement distance is 742 m.
文摘Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.41972284 and 42090054)This work was also supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2020Z005).
文摘Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.
文摘Probabilistic back-analysis is an important means to infer the statistics of uncertain soil parameters,making the slope reliability assessment closer to the engineering reality.However,multi-source information(including test data,monitored data,field observation and slope survival records)is rarely used in current probabilistic back-analysis.Conducting the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction under rainfalls by integrating multi-source information is a challenging task since thousands of random variables and high-dimensional likelihood function are usually involved.In this paper,a framework by integrating a modified Bayesian Updating with Subset simulation(mBUS)method with adaptive Conditional Sampling(aCS)algorithm is established for the probabilistic back-analysis of spatially varying soil parameters and slope reliability prediction.Within this framework,the high-dimensional probabilistic back-analysis problem can be easily tackled,and the multi-source information(e.g.monitored pressure heads and slope survival records)can be fully used in the back-analysis.A real Taoyuan landslide case in Taiwan,China is investigated to illustrate the effectiveness and performance of the established framework.The findings show that the posterior knowledge of soil parameters obtained from the established framework is in good agreement with the field observations.Furthermore,the updated knowledge of soil parameters can be utilized to reliably predict the occurrence probability of a landslide caused by the heavy rainfall event on September 12,2004 or forecast the potential landslides under future rainfalls in the Fuhsing District of Taoyuan City,Taiwan,China.
基金funded by the National Natural Science Foundation of China(42307248,U23A2047,42277187)Natural Science Foundation of Hebei Province(D2022202005)+1 种基金Planning and Natural Resources Research Project of Tianjin City(2022-40,KJ[2024]25)the support from the Graduated Student Innovation Funding Project of Hebei Province(CXZZSS2024007)。
文摘This study proposed a novel friction law dependent on velocity,displacement and normal stress for kinematic analysis of runout process of rapid landslides.The well-known Yigong landslide occurring in the Tibetan Plateau of China was employed as the case,and the derived dynamic friction formula was included into the numerical simulation based on Particle Flow Code.Results showed that the friction decreased quickly from 0.64(the peak)to 0.1(the stead value)during the 5s-period after the sliding initiation,which explained the behavior of rapid movement of the landslide.The monitored balls set at different sections of the mass showed similar variation characteritics regarding the velocity,namely evident increase at the initial phase of the movement,followed by a fluctuation phase and then a stopping one.The peak velocity was more than 100 m/s and most particles had low velocities at 300s after the landslide initiation.The spreading distance of the landslide was calculated at the two-dimension(profile)and three-dimension scale,respectively.Compared with the simulation result without considering friction weakening effect,our results indicated a max distance of about 10 km from the initial unstable position,which fit better with the actual situation.
基金supported by the National Natural Science Foundation of China(42322702,42177131)。
文摘Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.
文摘Due to its abundant rainfall, the city of Libreville, which concentrates more than half of Gabon’s population, is frequently confronted with the impacts of natural disasters such as floods and landslides. This study attempts to identify the complex relationships between the dynamics of land use and the role of rainfall in the occurrence of landslides. On the one hand, it uses statistics on landslides compiled from information taken from general news bulletins and, on the other, daily rainfall data obtained from the National Meteorological Department. The study revealed that the Libreville East sector, dominated by Mount Nkol Ogoum, one of Libreville’s most prominent landforms, is affected by a land-use dynamic in which human settlement has been progressing for some thirty years, to the detriment of the original vegetation which, among other things, helped to stabilise the soil on the hillsides and the marshy areas at the foot of the slopes. The result is not only an uncontrolled occupation of the land, but also a major landslide every two years in this part of the city, causing significant loss of life and property. However, an analysis of the time series shows little rainfall variability, marked in particular by a predominance of negative anomalies, and the occurrence of a few exceptional daily rainfall peaks. Similarly, the period from 20 October to 20 November, which receives the most rainfall, also appears to be the most conducive to landslides.