In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temper...In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure.The results show that the new boundary condition improves the calculation accuracy,but the influence of photoionization on the streamer discharge process is not obvious.The discharge current in the development of streamer discharge is defined,and the corresponding expression of the positive and negative streamer discharge current is given.The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced.In the process of discharge,only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure,and the trend of the other parameters is basically the same as that described in the previous paper.The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure,which has certain significance for the development of aviation and high voltage engineering.展开更多
Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emiss...Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu’an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.展开更多
In order to investigate the sand mold strength after the aeration sand filling-high pressure squeeze moldingprocess,a tree-dimentional(3D)numerical simulation was introduced.The commercial finite element method(FEM)so...In order to investigate the sand mold strength after the aeration sand filling-high pressure squeeze moldingprocess,a tree-dimentional(3D)numerical simulation was introduced.The commercial finite element method(FEM)software ABAQUScombined with a revised Drucker-Prager/Cap model was used to simulate the squeeze compaction process.Additionally,the sand bulk density after the aeration sand filling process was tested by a specially designed experiment,which divided the whole sand bulk in the molding chamber into5x9regions and it was used as the input to simulate the squeeze process.During the simulation process,the uniform modeling simulation and the patition modeling simulation methods were used a d the3D numercal simulation results were compared with correlative benchmark testings.From the3D numerica simulation results,it can be concluded that the uniform sand bulk density distribution can obtain a high quality sandmold and the revised Drncker-Pager/Cap model is suitable for handling the situation with the complex paaern.The3D numerical simulation results can predict well the sand mold strength distribution and can be used as guidelines for the production practice.展开更多
The free flow on the step surfaces has received much attention for its representative body type,flow structure,water-air two phase flow,cavitation,and many complex issues.The experiments about the time-averaged pressu...The free flow on the step surfaces has received much attention for its representative body type,flow structure,water-air two phase flow,cavitation,and many complex issues.The experiments about the time-averaged pressure and aeration concentration distribution on the step surface show that the vertical plane of steps will inevitably experience negative pressure,which must rely on adequate aeration concentration to avoid cavitation damage.However,the self-aerated flow at the head section has a relatively low aeration concentration,and the concentration of the entire steps decreases with the increasing of weir head,the minimum appears in the vicinity of the corner,and the location is close to the minimum pressure.Thus,it is necessary to set aerator in the upstream end of the step surfaces to avoid cavitation damage.展开更多
This article experimentally investigated the pressure and cavitation characteristics of high velocity flow over a surface irregularity with and without aeration in a non-circulating water tunnel system. The surface ir...This article experimentally investigated the pressure and cavitation characteristics of high velocity flow over a surface irregularity with and without aeration in a non-circulating water tunnel system. The surface irregularity is a cylindrical protrusion made of stainless steel of 6 mm diameter and 2 mm height. Pressures with and without aeration were measured with MPX400D pressure transducers and real-timely acquired by a SINOCERA YE6263 data acquisition system. Variations in flow regimes with and without aeration were observed. Pressure profiles and their variations with air concentration upper and lower cylindrical protrusion on the invert and obvert walls were determined. Variations of cavitation number with air concentration lower cylindrical protrusion were analyzed. Also, cavitation numbers in the presence and absence of aeration were compared.展开更多
Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter m...Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus.展开更多
The aim of present study is to investigate the burning rate,ignition delay,and flame characteristics of ammonium perchlorate(AP)-hydroxyl terminated poly-butadiene(HTPB)[AP/HTPB]based composite propellants(CSP's)i...The aim of present study is to investigate the burning rate,ignition delay,and flame characteristics of ammonium perchlorate(AP)-hydroxyl terminated poly-butadiene(HTPB)[AP/HTPB]based composite propellants(CSP's)in sub-atmospheric pressure regimes(13 kPae100 kPa).Several fuels and catalyzed were used to evaluate their effects on the combustion characteristics of AP based propellants in sub-atmospheric pressure regimes.In fuels,aluminum(Al)and boron(B)were selected as metallic and non-metallic fuel respectively.While in catalyst,butyl ferrocene(B.F.)and ferric oxide(F.O.)were selected as liquid and solid catalyst respectively.Apart from these,other ingredients that were used are di-octyl adipate(DOA),toluene di-isocyanate(TDI),and glycerol.The article throws some light on the burning rate and ignition delay properties for these new classes of prepared propellant samples.At subatmospheric pressures,all propellants are susceptible to irregular burning with the ejection of soot's,fumes,and unburned particles.F.O.based catalyzed propellants can sustain its combustion up to the lowest pressure.展开更多
This experimental investigation was systernatically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Tech nology in China, The test velocity is between 20...This experimental investigation was systernatically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Tech nology in China, The test velocity is between 20m/s and 40m/ s. The least air concentration to prevent cavitation erosion lies between 1. 7% and 4. 5%. Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured. Time-averaged pressure profiles with and without aeration were compared. Pressure characteristics cotresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.展开更多
确定填埋场注气过程中气体压力分布特征可为好氧通风工程提供关键技术和理论支撑。以现场单井注气试验为依托,在渗流力学理论的基础上,开展了不同注气强度条件下气体压力分布监测试验,分析了注气过程中气体压力的径向分布特征,推导了注...确定填埋场注气过程中气体压力分布特征可为好氧通风工程提供关键技术和理论支撑。以现场单井注气试验为依托,在渗流力学理论的基础上,开展了不同注气强度条件下气体压力分布监测试验,分析了注气过程中气体压力的径向分布特征,推导了注气条件下垃圾土体内部以解析解形式表达的气体压力预测(analytical gas pressure prediction,简称AGPP)模型;结合现场气体压力监测结果,构建了以注气井压力为核心参数的经验公式形式的气体压力预测(empiricalgaspressure prediction,简称EGPP)模型。试验结果表明:低压注气强度也可以达到良好的注气效果,在较短时间内可以让气体充满注气井周围;通过现场监测数据与AGPP模型、EGPP模型的对比,初步验证了两种模型的可靠性。以上成果为预测和评估好氧通风过程中垃圾填埋场气体压力分布提供了新方法。展开更多
In order to effectively widen the high-altitude operating limits of the multi-swirl staged combustor,the ignition and lean blow-out(LBO)performances of the model combustor were experimentally acquired under the condit...In order to effectively widen the high-altitude operating limits of the multi-swirl staged combustor,the ignition and lean blow-out(LBO)performances of the model combustor were experimentally acquired under the conditions of room temperature and sub-atmospheric pressure with the altitude ranging from 0 km to 12 km.Moreover,the isothermal flow fields inside a staged model combustor with different sub-atmospheric conditions were simulated.Experimental results show that the minimum ignition and LBO fuel-air ratio(FAR)increase rapidly with the increase of simulated altitude.In addition,as the relative pressure drop of injector increases from1%to 3%,the ignition and LBO performances are gradually improved.Side visualization of the flame by high-speed camera shows that the time-averaged flames under stable combustion have a similar distribution pattern under different pressure drops.The luminous intensity is stratified into dim-bright-dim layers along axial direction.The flame near LBO shrinks to the outlet of pilot stage with a great reduction in luminous intensity.The numerical results reveal that with the decrease of air pressure,the air mass flow rate involved in atomization and combustion is significantly reduced,and the aerodynamic shear force of swirling air is weakened,which are adverse to atomization and fuel-air mixing for airblast atomizer and further lead to the deterioration of ignition and LBO performances.展开更多
Experimental observations show that the random process of two phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is ...Experimental observations show that the random process of two phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re attachment point where the jet trajectory flow over the aerator re attaches to bottom of the channel, and its amplitude is 2 3 times larger than when there is no aerator. There is a dominant frequency of 1 24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.展开更多
基金supported by the No.703 Research Institute of CSIC(China Shipbuilding Industry Corporation)and Yunnan Electric Test&Research Institute Group CO.,Ltd.
文摘In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure.The results show that the new boundary condition improves the calculation accuracy,but the influence of photoionization on the streamer discharge process is not obvious.The discharge current in the development of streamer discharge is defined,and the corresponding expression of the positive and negative streamer discharge current is given.The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced.In the process of discharge,only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure,and the trend of the other parameters is basically the same as that described in the previous paper.The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure,which has certain significance for the development of aviation and high voltage engineering.
基金Project 2006CB202204-3 supported by the National Basic Research Program of China
文摘Given the problem of the long time required for testing gas pressure, we propose a fast-test method in which we used a technique of fast borehole sealing and air replenishing. Based on the characteristics of gas emission from boreholes to be tested, we built a theoretical model for calculating parameters during the process of increasing natural pressure and aeration. Using this model, we investigated the effect of different aeration conditions on velocity of pressure tests. The result shows that: 1) aerating air into boreholes can speed up gas pressure tests and 2) the more similar the pressure of the aerated air to the original gas pressure, the smaller the gas volume absorbed by coal and the shorter the time needed in pressure test. A case study in the Lu’an mining area shows that the time needed for gas pressure test is only 4 h using our method of aeration and 29 h under conditions of increasing natural pressure, saving time by 86.2%. This case study also indicates that, by using the aeration method, only one hour is needed for gas pressure to reach a stable state, which breaks the record of the shortest time needed for gas pressure tests in China.
基金The National Natural Science Foundation of China(No.51575304)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2012ZX04012011)
文摘In order to investigate the sand mold strength after the aeration sand filling-high pressure squeeze moldingprocess,a tree-dimentional(3D)numerical simulation was introduced.The commercial finite element method(FEM)software ABAQUScombined with a revised Drucker-Prager/Cap model was used to simulate the squeeze compaction process.Additionally,the sand bulk density after the aeration sand filling process was tested by a specially designed experiment,which divided the whole sand bulk in the molding chamber into5x9regions and it was used as the input to simulate the squeeze process.During the simulation process,the uniform modeling simulation and the patition modeling simulation methods were used a d the3D numercal simulation results were compared with correlative benchmark testings.From the3D numerica simulation results,it can be concluded that the uniform sand bulk density distribution can obtain a high quality sandmold and the revised Drncker-Pager/Cap model is suitable for handling the situation with the complex paaern.The3D numerical simulation results can predict well the sand mold strength distribution and can be used as guidelines for the production practice.
基金The National Basic Research Program of China("973"Project)(Grant No.2013CB035905)The National Natural Science Foundation of China(Grant No.51179114)
文摘The free flow on the step surfaces has received much attention for its representative body type,flow structure,water-air two phase flow,cavitation,and many complex issues.The experiments about the time-averaged pressure and aeration concentration distribution on the step surface show that the vertical plane of steps will inevitably experience negative pressure,which must rely on adequate aeration concentration to avoid cavitation damage.However,the self-aerated flow at the head section has a relatively low aeration concentration,and the concentration of the entire steps decreases with the increasing of weir head,the minimum appears in the vicinity of the corner,and the location is close to the minimum pressure.Thus,it is necessary to set aerator in the upstream end of the step surfaces to avoid cavitation damage.
基金the National Natural ScienceFoundation of China (Grant Nos: 50579067 and 50539070).
文摘This article experimentally investigated the pressure and cavitation characteristics of high velocity flow over a surface irregularity with and without aeration in a non-circulating water tunnel system. The surface irregularity is a cylindrical protrusion made of stainless steel of 6 mm diameter and 2 mm height. Pressures with and without aeration were measured with MPX400D pressure transducers and real-timely acquired by a SINOCERA YE6263 data acquisition system. Variations in flow regimes with and without aeration were observed. Pressure profiles and their variations with air concentration upper and lower cylindrical protrusion on the invert and obvert walls were determined. Variations of cavitation number with air concentration lower cylindrical protrusion were analyzed. Also, cavitation numbers in the presence and absence of aeration were compared.
基金National Natural Science Foundation of China(Grant Nos.52175066,51805468)Hebei Provincial National Natural Science Foundation of China(Grant No.E2020203090)+1 种基金Science and Technology Project of Hebei Education Department of China(Grant No.ZD2022052)Open Foundation of the Key Laboratory of Fire Emergency Rescue Equipment of China(Grant No.2020XFZB07).
文摘Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus.
文摘The aim of present study is to investigate the burning rate,ignition delay,and flame characteristics of ammonium perchlorate(AP)-hydroxyl terminated poly-butadiene(HTPB)[AP/HTPB]based composite propellants(CSP's)in sub-atmospheric pressure regimes(13 kPae100 kPa).Several fuels and catalyzed were used to evaluate their effects on the combustion characteristics of AP based propellants in sub-atmospheric pressure regimes.In fuels,aluminum(Al)and boron(B)were selected as metallic and non-metallic fuel respectively.While in catalyst,butyl ferrocene(B.F.)and ferric oxide(F.O.)were selected as liquid and solid catalyst respectively.Apart from these,other ingredients that were used are di-octyl adipate(DOA),toluene di-isocyanate(TDI),and glycerol.The article throws some light on the burning rate and ignition delay properties for these new classes of prepared propellant samples.At subatmospheric pressures,all propellants are susceptible to irregular burning with the ejection of soot's,fumes,and unburned particles.F.O.based catalyzed propellants can sustain its combustion up to the lowest pressure.
文摘This experimental investigation was systernatically conducted with the aid of a non-circulating water tunnel in the Hydraulics Laboratory at Zhejiang University of Tech nology in China, The test velocity is between 20m/s and 40m/ s. The least air concentration to prevent cavitation erosion lies between 1. 7% and 4. 5%. Pressure waveforms with and without aeration in cavitation and cavitation erosion regions were measured. Time-averaged pressure profiles with and without aeration were compared. Pressure characteristics cotresponding to least air concentration to prevent cavitation erosion in cavitation and cavitation erosion regions were analyzed.
文摘确定填埋场注气过程中气体压力分布特征可为好氧通风工程提供关键技术和理论支撑。以现场单井注气试验为依托,在渗流力学理论的基础上,开展了不同注气强度条件下气体压力分布监测试验,分析了注气过程中气体压力的径向分布特征,推导了注气条件下垃圾土体内部以解析解形式表达的气体压力预测(analytical gas pressure prediction,简称AGPP)模型;结合现场气体压力监测结果,构建了以注气井压力为核心参数的经验公式形式的气体压力预测(empiricalgaspressure prediction,简称EGPP)模型。试验结果表明:低压注气强度也可以达到良好的注气效果,在较短时间内可以让气体充满注气井周围;通过现场监测数据与AGPP模型、EGPP模型的对比,初步验证了两种模型的可靠性。以上成果为预测和评估好氧通风过程中垃圾填埋场气体压力分布提供了新方法。
基金supported by National Science and Technology Major Project with Project No.2017-Ⅲ-0007-0032。
文摘In order to effectively widen the high-altitude operating limits of the multi-swirl staged combustor,the ignition and lean blow-out(LBO)performances of the model combustor were experimentally acquired under the conditions of room temperature and sub-atmospheric pressure with the altitude ranging from 0 km to 12 km.Moreover,the isothermal flow fields inside a staged model combustor with different sub-atmospheric conditions were simulated.Experimental results show that the minimum ignition and LBO fuel-air ratio(FAR)increase rapidly with the increase of simulated altitude.In addition,as the relative pressure drop of injector increases from1%to 3%,the ignition and LBO performances are gradually improved.Side visualization of the flame by high-speed camera shows that the time-averaged flames under stable combustion have a similar distribution pattern under different pressure drops.The luminous intensity is stratified into dim-bright-dim layers along axial direction.The flame near LBO shrinks to the outlet of pilot stage with a great reduction in luminous intensity.The numerical results reveal that with the decrease of air pressure,the air mass flow rate involved in atomization and combustion is significantly reduced,and the aerodynamic shear force of swirling air is weakened,which are adverse to atomization and fuel-air mixing for airblast atomizer and further lead to the deterioration of ignition and LBO performances.
文摘Experimental observations show that the random process of two phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re attachment point where the jet trajectory flow over the aerator re attaches to bottom of the channel, and its amplitude is 2 3 times larger than when there is no aerator. There is a dominant frequency of 1 24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.