Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motiva...Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.展开更多
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac...Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.展开更多
Background and Aims: Pulse pressure variation (PPV) is a reliable and predictive dynamic parameter presently being utilized for fluid responsiveness. In the operating room, fluid administration based on PPV monitoring...Background and Aims: Pulse pressure variation (PPV) is a reliable and predictive dynamic parameter presently being utilized for fluid responsiveness. In the operating room, fluid administration based on PPV monitoring helps the physician in deciding whether to volume resuscitate or use interventions in patients undergoing surgery. Propofol is an intravenous induction agent which lowers blood pressure. There are multiple causes such as depression in cardiac output, and peripheral vasodilatation for hypotension. We undertook this study to observe the utility of PPV as a guide to fluid therapy after propofol induction. Primary outcome of our study was to monitor PPV as a marker of fluid responsiveness for the hypotension caused by propofol induction. Secondary outcome included the correlation of PPV with other hemodynamic parameters like heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP);after induction with propofol at regular interval of time. Methods: A total number of 90 patients were recruited. Either of the radial artery was then cannulated under local anaesthesia with 20G VygonLeadercath arterial cannula and invasive monitoring transduced. A baseline recording of heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and PPV was then recorded. Patients were then induced with predetermined doses of propofol (2 mg/kg) and recordings of HR, SBP, DBP, and PPV were taken at 5, 10 and 15 minutes. Results: Intraoperatively, PPV was significantly higher at 5 minutes and significantly lower at 15 minutes after induction. It was observed that there were no statistically significant correlations between PPV and SBP or DBP. PPV was strongly and directly associated with HR. Conclusion: We were able to establish that PPV predicts fluid responsiveness in hypotension caused by propofol induction;and can be used to administer fluid therapy in managing such hypotension. However, PPV was not directly correlated with hypotension subsequent to propofol administration.展开更多
Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical p...Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.展开更多
Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability ...Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.展开更多
Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental...Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.展开更多
Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by ar...Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by artificial reefs and adjacent waters(estuary area(EA),aquaculture area(AA),artificial reef area(ARA),natural area(NA)and comprehensive effect area(CEA))in Haizhou Bay in spring and autumn,we analyzed phyto-zooplankton composition,abundance and biomass,and correlation with hydrologic variables to gain information about the forces that structure the plankton.The results showed that the dominant zooplankton were copepods(spring,98.9%;autumn,94.2%),while the phytoplankton were mainly composed of Bacillariophyta(spring,61.8%;autumn,95.6%).The RDA results showed that temperature,salinity and depth highly associated with the distribution and composition of plankton species among the habitats than other factors in spring;temperature,Chla and DO had the strongest influence in autumn.The zooplankton in the ARA and AA ecosystems basically contained the same species as those in other habitats,and each habitat also exhibited a relatively unique combination of plankton species.The structures of the EA zooplankton in spring and the EA phytoplankton in both seasons were much different than other habitats,which may have been caused by factors such as currents and tides.We concluded that there exists similarity of the plankton community between artificial reef area and adjacent waters,whereas the EAs may be relatively independent systems.Therefore,these interaction between plankton community should be considered when designing MPA networks,and ocean circulations should be considered more than the environmental factors.展开更多
Seasonal variation of hearing sensitivity has been observed in many vertebrate groups with obvious vocal behaviors.Circulating hormones,conspecific calling signals,and temperature are potential factors that drive thes...Seasonal variation of hearing sensitivity has been observed in many vertebrate groups with obvious vocal behaviors.Circulating hormones,conspecific calling signals,and temperature are potential factors that drive these plasticity patterns.Turtles have a hearing range that appears to be limited to under 1.5 kHz and are often thought to be non-vocal;thus,they are commonly neglected in vocal communication research.In this study,we aimed to determine whether the auditory phenotype exhibits seasonal variation in sensitivity and to analyze the potential factors driving such variation patterns in turtles.We measured hearing sensitivity and sex hormone levels in female(estradiol)and male(testosterone and dihydrotestosterone)Red-eared sliders(Trachemys scripta elegans)during spring and winter.The results showed that auditory brainstem response(ABR)thresholds were significantly lower in spring than in winter at a frequency range of 0.5-0.9 kHz.The hearing-sensitivity bandwidth was wider,and the ABR latency was significantly shorter in spring than in winter.No significant differences were found in estradiol,testosterone,and dihydrotestosterone levels in T.scripta elegans between spring and winter.This study is the first to reveal the seasonal variation of peripheral hearing sensitivity in turtles,a special animal group with limited hearing range and less vocalization.Temperature variations may be used to explain these seasonal effects,but further research is required to confirm our findings.展开更多
Background Domestic goose breeds are descended from either the Swan goose(Anser cygnoides)or the Greylag goose(Anser anser),exhibiting variations in body size,reproductive performance,egg production,feather color,and ...Background Domestic goose breeds are descended from either the Swan goose(Anser cygnoides)or the Greylag goose(Anser anser),exhibiting variations in body size,reproductive performance,egg production,feather color,and other phenotypic traits.Constructing a pan-genome facilitates a thorough identification of genetic variations,thereby deepening our comprehension of the molecular mechanisms underlying genetic diversity and phenotypic variability.Results To comprehensively facilitate population genomic and pan-genomic analyses in geese,we embarked on the task of 659 geese whole genome resequencing data and compiling a database of 155 RNA-seq samples.By constructing the pan-genome for geese,we generated non-reference contigs totaling 612 Mb,unveiling a collection of 2,813 novel genes and pinpointing 15,567 core genes,1,324 softcore genes,2,734 shell genes,and 878 cloud genes in goose genomes.Furthermore,we detected an 81.97 Mb genomic region showing signs of genome selection,encompassing the TGFBR2 gene correlated with variations in body weight among geese.Genome-wide association studies utilizing single nucleotide polymorphisms(SNPs)and presence-absence variation revealed significant genomic associations with various goose meat quality,reproductive,and body composition traits.For instance,a gene encoding the SVEP1 protein was linked to carcass oblique length,and a distinct gene-CDS haplotype of the SVEP1 gene exhibited an association with carcass oblique length.Notably,the pan-genome analysis revealed enrichment of variable genes in the“hair follicle maturation”Gene Ontology term,potentially linked to the selection of feather-related traits in geese.A gene presence-absence variation analysis suggested a reduced frequency of genes associated with“regulation of heart contraction”in domesticated geese compared to their wild counterparts.Our study provided novel insights into gene expression features and functions by integrating gene expression patterns across multiple organs and tissues in geese and analyzing population variation.Conclusion This accomplishment originates from the discernment of a multitude of selection signals and candidate genes associated with a wide array of traits,thereby markedly enhancing our understanding of the processes underlying domestication and breeding in geese.Moreover,assembling the pan-genome for geese has yielded a comprehensive apprehension of the goose genome,establishing it as an indispensable asset poised to offer innovative viewpoints and make substantial contributions to future geese breeding initiatives.展开更多
In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was c...In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was conducted during summer and monsoon seasons, focusing on Kadubeesanahalli, a high-traffic area within the Bengaluru Metropolitan City. Hourly sample data was collected using a BTEX analyzer(Model GC955-600) and subsequently transformed into daily, monthly, and seasonal values. The study revealed distinct patterns in benzene concentrations. Benzene levels were lowest during the early morning hours, specifically from 1:00 a.m.to 7:00 a.m.. Concentrations then increased from 7:00 a.m. to 9:00 a.m. and again from 4:00 p.m. to 11:00 p.m.,corresponding to the morning and evening peak traffic hours. However, between 10:00 a.m. and 4:00 p.m., the concentration decreased due to reduced traffic levels. These diurnal variations in benzene concentration are influenced by meteorological parameters. Comparing the two seasons, higher concentrations of Benzene, EthylBenzene, and MP-xylene were observed during the summer season. This increase is attributed to the elevated temperatures during summer, which promote the vaporization of BTEX compounds. Conversely, lower BTEX concentrations were recorded during the monsoon season due to the wet deposition process. The observed positive correlation(r > 0.5) among BTEX parameters strongly suggests a common source, most likely originating from vehicular emissions.展开更多
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti...This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.展开更多
Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide associ...Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding.展开更多
Identifying factors affecting the survival of individuals is essential for understanding the evolution of life-history traits and population dynamics.Despite numerous studies on this subject in north-temperate environ...Identifying factors affecting the survival of individuals is essential for understanding the evolution of life-history traits and population dynamics.Despite numerous studies on this subject in north-temperate environments,there is a lack of equivalent studies at similar latitudes in the south.Here,we used a 14-year dataset of capture,banding,and resighting to estimate the annual variation in the apparent adult survival probability of a south-temperate population of House Wrens(Troglodytes aedon bonariae).We evaluated temporal variation in sur-vival and the effect of environmental(climatic)and demographic variables(adult abundance,total number of fledglings produced during each breeding season)on survival estimators.We found that the probability of adult survival decreased as the abundance of breeding adults increased.This density-dependent effect could be related to the resident lifestyle of southern House Wrens,which could determine an intense competition for territories and resources that ultimately would affect their survival.展开更多
The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud...Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.展开更多
Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,...Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.展开更多
Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,t...Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.展开更多
Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of A...Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of Asia from 2001 to 2020 were analyzed by Sen and MK trend analysis methods in this study .Moreover , a GPP change attribution model was established to explore the driving influences of factors such as Leaf Area Index (LAI), Land Surface Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radiation and Wind Speed on GPP. The results indicate that summer GPP values are significantly higher than those in other months, accounting for 60.8% of the annual total GPP;spring and autumn contribute 18.91% and 13.04%, respectively. In winter, due to vegetation being nearly dormant, the contribution is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast to northwest. LAI primarily drives the spatial and seasonal variations of regional GPP, while VPD, surface temperature, solar radiation, and soil moisture have varying impacts on GPP across different dimensions. Additionally, wind speed exhibits a minor contribution to GPP across different dimensions.展开更多
Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting t...Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting the repeated surveys of dissolved oxygen(DO) and other relevant hydrographic parameters along the section from the Changjiang River Estuary to the Jeju-do in the summer from 1997 to 2014,rather different trends were revealed for the dual low-DO cores.The nearshore low-DO core,located close to the river mouth and relatively stable,shows that hypoxia has become more severe with the lowest DO descen ding at a rate of -0.07 mg/(L·a) and the thickness of low-DO zone rising at a rate of 0.43 m/a.The offshore core,centered around 40-m isobath but moving back and forth between 123.5°-125°E,shows large fluctuations in the minimum DO concentration,with the thickness of low-DO zone falling at a rate of -1.55 m/a.The probable factors affecting the minimum DO concentration in the two regions also vary.In the nearshore region,the decreasing minimum DO is driven by the increase in both stratification and primary productivity,with the enhanced extension of the Changjiang River Diluted Water(CDW) strengthening stratification.In the offshore region,the fluctuating trend of the minimum DO concentration indicates that both DO loss and DO supplement are distinct.The DO loss is primarily attributed to bottom apparent oxygen utilization caused by the organic matter decay and is also relevant to the advection of low-DO water from the nearshore region.The DO supplement is primarily due to weakened stratification.Our analysis also shows that the minimum DO concentration in the nearshore region was extremely low in 1998,2003,2007 and 2010,related to El Ni?o signal in these summers.展开更多
Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental pro...Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.展开更多
文摘Multiplicative noise removal problems have attracted much attention in recent years.Unlike additive noise,multiplicative noise destroys almost all information of the original image,especially for texture images.Motivated by the TV-Stokes model,we propose a new two-step variational model to denoise the texture images corrupted by multiplicative noise with a good geometry explanation in this paper.In the first step,we convert the multiplicative denoising problem into an additive one by the logarithm transform and propagate the isophote directions in the tangential field smoothing.Once the isophote directions are constructed,an image is restored to fit the constructed directions in the second step.The existence and uniqueness of the solution to the variational problems are proved.In these two steps,we use the gradient descent method and construct finite difference schemes to solve the problems.Especially,the augmented Lagrangian method and the fast Fourier transform are adopted to accelerate the calculation.Experimental results show that the proposed model can remove the multiplicative noise efficiently and protect the texture well.
基金the National Natural Science Foun-dation of China(Grant Nos.12105090 and 12175057).
文摘Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing.
文摘Background and Aims: Pulse pressure variation (PPV) is a reliable and predictive dynamic parameter presently being utilized for fluid responsiveness. In the operating room, fluid administration based on PPV monitoring helps the physician in deciding whether to volume resuscitate or use interventions in patients undergoing surgery. Propofol is an intravenous induction agent which lowers blood pressure. There are multiple causes such as depression in cardiac output, and peripheral vasodilatation for hypotension. We undertook this study to observe the utility of PPV as a guide to fluid therapy after propofol induction. Primary outcome of our study was to monitor PPV as a marker of fluid responsiveness for the hypotension caused by propofol induction. Secondary outcome included the correlation of PPV with other hemodynamic parameters like heart rate (HR), systolic blood pressure (SBP), and diastolic blood pressure (DBP);after induction with propofol at regular interval of time. Methods: A total number of 90 patients were recruited. Either of the radial artery was then cannulated under local anaesthesia with 20G VygonLeadercath arterial cannula and invasive monitoring transduced. A baseline recording of heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and PPV was then recorded. Patients were then induced with predetermined doses of propofol (2 mg/kg) and recordings of HR, SBP, DBP, and PPV were taken at 5, 10 and 15 minutes. Results: Intraoperatively, PPV was significantly higher at 5 minutes and significantly lower at 15 minutes after induction. It was observed that there were no statistically significant correlations between PPV and SBP or DBP. PPV was strongly and directly associated with HR. Conclusion: We were able to establish that PPV predicts fluid responsiveness in hypotension caused by propofol induction;and can be used to administer fluid therapy in managing such hypotension. However, PPV was not directly correlated with hypotension subsequent to propofol administration.
基金Supported by the National Natural Science Foundation of China(Nos.42176116,41576126,41890851,U21A6001)the Natural Science Foundation of Guangdong Province(No.2017A030306020)+4 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302004)the Rising Star Foundation of the South China Sea Institute of Oceanology(No.NHXX2019ST0101)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2018377)the Science and Technology Planning Project of Guangdong Province of China(No.2021B1212050023)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060503)。
文摘Variations of picoplankton groups were investigated over a one-month period in Daya Bay and Sanya Bay,in the northern South China Sea.The two coastal regions exhibited different variation patterns in physicochemical parameters.Moreover,the diel variations of picoplankton groups were different between the two bays.The abundance of the picoplankton in Sanya Bay displayed a pronounced diel variation,while it was not significant in Daya Bay.In addition,some similar patterns of picoplankton abundance were discovered.In the two bays,virioplankton exhibited the smallest fluctuation range,whereas picocyanobacteria fluctuated most markedly.The fluctuation range of picoplankton groups was larger in spring tide than in neap tide,especially in Sanya Bay.Random forest model analysis demonstrated that the variation of picoplankton groups was attributed to physical and chemical factors in Sanya Bay and Daya Bay,respectively.Therefore,our findings suggest that virioplankton abundance can persist more stably in response to changing environmental conditions compared to bacterioplankton and picophytoplankton.
基金supported by the National Key R&D Program of China(2021YFD1301101)National Swine Industry Technology System(CARS-35)Agricultural Science and Technology Innovation Program(ASTIP-IAS02)。
文摘Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds.
基金supported by Liangzi Lake reservesupported by the International Partnership Program of Chinese Academy of Sciences [Grant number, 152342KYSB20200021]+1 种基金the National Key R and D Program of China [Grant numbers, 2020YFD0900305, 2018YFD0900801]National Natural Science Foundation of China [Grant numbers, 32001107, 32201285, 32101254]
文摘Macrophyte habitats exhibit remarkable heterogeneity,encompassing the spatial variation of abiotic and biotic components such as changes in water conditions and weather as well as anthropogenic stressors.Environmental factors are thought to be important drivers shaping the genetic and epigenetic variation of aquatic plants.However,the links among genetic diversity,epigenetic variation,and environmental variables remain largely unclear,especially for clonal aquatic plants.Here,we performed population genetic and epigenetic analyses in conjunction with habitat discrimination to elucidate the environmental factors driving intraspecies genetic and epigenetic variation in hornwort(Ceratophyllum demersum)in a subtropical lake.Environmental factors were highly correlated with the genetic and epigenetic variation of C.demersum,with temperature being a key driver of the genetic variation.Lower temperature was detected to be correlated with greater genetic and epigenetic variation.Genetic and epigenetic variation were positively driven by water temperature,but were negatively affected by ambient air temperature.These findings indicate that the genetic and epigenetic variation of this clonal aquatic herb is not related to the geographic feature but is instead driven by environmental conditions,and demonstrate the effects of temperature on local genetic and epigenetic variation in aquatic systems.
基金financed by the Jiangsu Haizhou Bay National Sea Ranching Demonstration Project(No.D-8005-18-0188)the Shanghai Municipal Science and Technology Commission Local Capacity Construction Project(No.21010502200).
文摘Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by artificial reefs and adjacent waters(estuary area(EA),aquaculture area(AA),artificial reef area(ARA),natural area(NA)and comprehensive effect area(CEA))in Haizhou Bay in spring and autumn,we analyzed phyto-zooplankton composition,abundance and biomass,and correlation with hydrologic variables to gain information about the forces that structure the plankton.The results showed that the dominant zooplankton were copepods(spring,98.9%;autumn,94.2%),while the phytoplankton were mainly composed of Bacillariophyta(spring,61.8%;autumn,95.6%).The RDA results showed that temperature,salinity and depth highly associated with the distribution and composition of plankton species among the habitats than other factors in spring;temperature,Chla and DO had the strongest influence in autumn.The zooplankton in the ARA and AA ecosystems basically contained the same species as those in other habitats,and each habitat also exhibited a relatively unique combination of plankton species.The structures of the EA zooplankton in spring and the EA phytoplankton in both seasons were much different than other habitats,which may have been caused by factors such as currents and tides.We concluded that there exists similarity of the plankton community between artificial reef area and adjacent waters,whereas the EAs may be relatively independent systems.Therefore,these interaction between plankton community should be considered when designing MPA networks,and ocean circulations should be considered more than the environmental factors.
基金funded by the Natural Science Foundation of Hainan Province(320QN256 to TW)the High-level Talent Project of the Hainan Natural Science Foundation(322RC661 to TW)+1 种基金the National Natural Science Foundation of China(31860608 to JW)the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province.
文摘Seasonal variation of hearing sensitivity has been observed in many vertebrate groups with obvious vocal behaviors.Circulating hormones,conspecific calling signals,and temperature are potential factors that drive these plasticity patterns.Turtles have a hearing range that appears to be limited to under 1.5 kHz and are often thought to be non-vocal;thus,they are commonly neglected in vocal communication research.In this study,we aimed to determine whether the auditory phenotype exhibits seasonal variation in sensitivity and to analyze the potential factors driving such variation patterns in turtles.We measured hearing sensitivity and sex hormone levels in female(estradiol)and male(testosterone and dihydrotestosterone)Red-eared sliders(Trachemys scripta elegans)during spring and winter.The results showed that auditory brainstem response(ABR)thresholds were significantly lower in spring than in winter at a frequency range of 0.5-0.9 kHz.The hearing-sensitivity bandwidth was wider,and the ABR latency was significantly shorter in spring than in winter.No significant differences were found in estradiol,testosterone,and dihydrotestosterone levels in T.scripta elegans between spring and winter.This study is the first to reveal the seasonal variation of peripheral hearing sensitivity in turtles,a special animal group with limited hearing range and less vocalization.Temperature variations may be used to explain these seasonal effects,but further research is required to confirm our findings.
基金funding from several sources,including the Chongqing Scientific Research Institution Performance Incentive Project(grant number cstc2022jxjl80007)the Earmarked Fund for China Agriculture Research System(grant number CARS-42-51)+5 种基金the Chongqing Scientific Research Institution Performance Incentive Project(grant number 22527 J)the Key R&D Project in Agriculture and Animal Husbandry of Rongchang(grant number No.22534C-22)Natural Science Foundation of Chongqing Project,grant number CSTB2022NSCQ-MSX0434Natural Science Foundation of Sichuan Project,grant number 2022NSFSC0605Natural Science Foundation of Sichuan Project,grant number 2021YFS0379the Chongqing Technology Innovation and Application Development Project(grant number No.cstc2021ycjh-bgzxm0248)。
文摘Background Domestic goose breeds are descended from either the Swan goose(Anser cygnoides)or the Greylag goose(Anser anser),exhibiting variations in body size,reproductive performance,egg production,feather color,and other phenotypic traits.Constructing a pan-genome facilitates a thorough identification of genetic variations,thereby deepening our comprehension of the molecular mechanisms underlying genetic diversity and phenotypic variability.Results To comprehensively facilitate population genomic and pan-genomic analyses in geese,we embarked on the task of 659 geese whole genome resequencing data and compiling a database of 155 RNA-seq samples.By constructing the pan-genome for geese,we generated non-reference contigs totaling 612 Mb,unveiling a collection of 2,813 novel genes and pinpointing 15,567 core genes,1,324 softcore genes,2,734 shell genes,and 878 cloud genes in goose genomes.Furthermore,we detected an 81.97 Mb genomic region showing signs of genome selection,encompassing the TGFBR2 gene correlated with variations in body weight among geese.Genome-wide association studies utilizing single nucleotide polymorphisms(SNPs)and presence-absence variation revealed significant genomic associations with various goose meat quality,reproductive,and body composition traits.For instance,a gene encoding the SVEP1 protein was linked to carcass oblique length,and a distinct gene-CDS haplotype of the SVEP1 gene exhibited an association with carcass oblique length.Notably,the pan-genome analysis revealed enrichment of variable genes in the“hair follicle maturation”Gene Ontology term,potentially linked to the selection of feather-related traits in geese.A gene presence-absence variation analysis suggested a reduced frequency of genes associated with“regulation of heart contraction”in domesticated geese compared to their wild counterparts.Our study provided novel insights into gene expression features and functions by integrating gene expression patterns across multiple organs and tissues in geese and analyzing population variation.Conclusion This accomplishment originates from the discernment of a multitude of selection signals and candidate genes associated with a wide array of traits,thereby markedly enhancing our understanding of the processes underlying domestication and breeding in geese.Moreover,assembling the pan-genome for geese has yielded a comprehensive apprehension of the goose genome,establishing it as an indispensable asset poised to offer innovative viewpoints and make substantial contributions to future geese breeding initiatives.
文摘In the urban atmosphere of Bengaluru, various volatile organic compounds(VOCs), particularly Benzene,Toluene, Ethylbenzene, and Xylene(BTEX), have shown an increasing trend in concentration. The present research was conducted during summer and monsoon seasons, focusing on Kadubeesanahalli, a high-traffic area within the Bengaluru Metropolitan City. Hourly sample data was collected using a BTEX analyzer(Model GC955-600) and subsequently transformed into daily, monthly, and seasonal values. The study revealed distinct patterns in benzene concentrations. Benzene levels were lowest during the early morning hours, specifically from 1:00 a.m.to 7:00 a.m.. Concentrations then increased from 7:00 a.m. to 9:00 a.m. and again from 4:00 p.m. to 11:00 p.m.,corresponding to the morning and evening peak traffic hours. However, between 10:00 a.m. and 4:00 p.m., the concentration decreased due to reduced traffic levels. These diurnal variations in benzene concentration are influenced by meteorological parameters. Comparing the two seasons, higher concentrations of Benzene, EthylBenzene, and MP-xylene were observed during the summer season. This increase is attributed to the elevated temperatures during summer, which promote the vaporization of BTEX compounds. Conversely, lower BTEX concentrations were recorded during the monsoon season due to the wet deposition process. The observed positive correlation(r > 0.5) among BTEX parameters strongly suggests a common source, most likely originating from vehicular emissions.
文摘This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature.
基金supported by the Hainan Province Science and Technology Special Fund,China(ZDYF2023XDNY086)the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2022-87)+2 种基金the Natural Science Foundation of Guangdong Province,China(2023A1515012052 and 2023A1515012092)the Guangzhou Science and Technology Plan Project,China(2023A04J1452 and 2023A04J0749)the Double First-class Discipline Promotion Project,China(2021B10564001).
文摘Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding.
基金supported by the University of Buenos Aires(UBACyT,20020090200117)CONICET(PIP112-200901-00011)grants to GJF.
文摘Identifying factors affecting the survival of individuals is essential for understanding the evolution of life-history traits and population dynamics.Despite numerous studies on this subject in north-temperate environments,there is a lack of equivalent studies at similar latitudes in the south.Here,we used a 14-year dataset of capture,banding,and resighting to estimate the annual variation in the apparent adult survival probability of a south-temperate population of House Wrens(Troglodytes aedon bonariae).We evaluated temporal variation in sur-vival and the effect of environmental(climatic)and demographic variables(adult abundance,total number of fledglings produced during each breeding season)on survival estimators.We found that the probability of adult survival decreased as the abundance of breeding adults increased.This density-dependent effect could be related to the resident lifestyle of southern House Wrens,which could determine an intense competition for territories and resources that ultimately would affect their survival.
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
基金the Henan Special Funds for Major Science and Technology,China(221100110400)the Henan Scienti?c and Technological Joint Project for Agricultural Improved Varieties,China(2022010503)the National Natural Science Foundation of China(31902038 and 32072564)。
文摘Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways.
基金supported in part by the Open Fund of State Key Laboratory of Integrated Chips and Systems,Fudan Universityin part by the National Science Foundation of China under Grant No.62304133 and No.62350610271.
文摘Reducing the process variation is a significant concern for resistive random access memory(RRAM).Due to its ultrahigh integration density,RRAM arrays are prone to lithographic variation during the lithography process,introducing electrical variation among different RRAM devices.In this work,an optical physical verification methodology for the RRAM array is developed,and the effects of different layout parameters on important electrical characteristics are systematically investigated.The results indicate that the RRAM devices can be categorized into three clusters according to their locations and lithography environments.The read resistance is more sensitive to the locations in the array(~30%)than SET/RESET voltage(<10%).The increase in the RRAM device length and the application of the optical proximity correction technique can help to reduce the variation to less than 10%,whereas it reduces RRAM read resistance by 4×,resulting in a higher power and area consumption.As such,we provide design guidelines to minimize the electrical variation of RRAM arrays due to the lithography process.
基金supported by the National Natural Science Foundation of China(No.61971062)BUPT Excellent Ph.D.Students Foundation(CX2022153)。
文摘Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.
文摘Gross primary productivity (GPP) of vegetation is a critical indicator of ecosystem growth and carbon sequestration. The spatiotemporal variation characteristics of land vegetation GPP trends in a specific region of Asia from 2001 to 2020 were analyzed by Sen and MK trend analysis methods in this study .Moreover , a GPP change attribution model was established to explore the driving influences of factors such as Leaf Area Index (LAI), Land Surface Temperature (LST), Vapor Pressure Deficit (VPD), Soil Moisture, Solar Radiation and Wind Speed on GPP. The results indicate that summer GPP values are significantly higher than those in other months, accounting for 60.8% of the annual total GPP;spring and autumn contribute 18.91% and 13.04%, respectively. In winter, due to vegetation being nearly dormant, the contribution is minimal at 7.19%. Spatially, GPP shows a decreasing trend from southeast to northwest. LAI primarily drives the spatial and seasonal variations of regional GPP, while VPD, surface temperature, solar radiation, and soil moisture have varying impacts on GPP across different dimensions. Additionally, wind speed exhibits a minor contribution to GPP across different dimensions.
基金The National Key Research&Development Program of China under contract No.2023YFC3108003 in Project No.2023YFC3108000the National Natural Science Foundation of China under contract No.41876026+3 种基金the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources under contract No.YJJC2201the National Programme on Global Change and Air–Sea Interaction Phase Ⅱ under contract No.GASI-01-CJKthe Zhejiang Provincial Ten Thousand Talents Program under contract No.2020R52038the Project of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOEDZZ2105。
文摘Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting the repeated surveys of dissolved oxygen(DO) and other relevant hydrographic parameters along the section from the Changjiang River Estuary to the Jeju-do in the summer from 1997 to 2014,rather different trends were revealed for the dual low-DO cores.The nearshore low-DO core,located close to the river mouth and relatively stable,shows that hypoxia has become more severe with the lowest DO descen ding at a rate of -0.07 mg/(L·a) and the thickness of low-DO zone rising at a rate of 0.43 m/a.The offshore core,centered around 40-m isobath but moving back and forth between 123.5°-125°E,shows large fluctuations in the minimum DO concentration,with the thickness of low-DO zone falling at a rate of -1.55 m/a.The probable factors affecting the minimum DO concentration in the two regions also vary.In the nearshore region,the decreasing minimum DO is driven by the increase in both stratification and primary productivity,with the enhanced extension of the Changjiang River Diluted Water(CDW) strengthening stratification.In the offshore region,the fluctuating trend of the minimum DO concentration indicates that both DO loss and DO supplement are distinct.The DO loss is primarily attributed to bottom apparent oxygen utilization caused by the organic matter decay and is also relevant to the advection of low-DO water from the nearshore region.The DO supplement is primarily due to weakened stratification.Our analysis also shows that the minimum DO concentration in the nearshore region was extremely low in 1998,2003,2007 and 2010,related to El Ni?o signal in these summers.
基金The National Key R&D Program of China under contract No.2022YFC2807604the Basic Scientific Fund for National Public Research Institutes of China under contract Nos 2022S02,2022Q03 and 2018S02+3 种基金the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018SDKJ0105-3the National Natural Science Foundation of China under contract Nos 41876030,41976021,41876231,4190060432 and 41706220the program Impact and Response of Antarctic Seas to Climate Change under contract No.IRASCC 01-01-01Athe Taishan Scholars Project Fund under contract No.ts20190963。
文摘Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies.