A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behave...A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized.展开更多
An electromagnetic wave is a complex vortex and a potential process. This allows us to omit the Lorentz gauge, formulate a mathematically precise theory, and avoid physics discordances. The mechanism of distribution o...An electromagnetic wave is a complex vortex and a potential process. This allows us to omit the Lorentz gauge, formulate a mathematically precise theory, and avoid physics discordances. The mechanism of distribution of complex waves in dielectric and electrical conductive environments was described.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
For electromagnetic governing equations formulated by magnetic vector potential and electric scalar potential,its detailed numerical implementation is achieved by using meshless method and Galerkin approach.And essent...For electromagnetic governing equations formulated by magnetic vector potential and electric scalar potential,its detailed numerical implementation is achieved by using meshless method and Galerkin approach.And essential boundary and interface condition of electromagnetic field are imposed by means of Lagrange multiplier method.Furthermore,the influences of interpolation point number at essential boundary and interface on computational results are also discussed.Examples are given to validate the effects of meshless method and Lagrange multiplier approach for electromagnetic field.展开更多
本文从时变场的场方程出发,分别给出带电粒子的拉格朗日函数及哈密顿函数.依据哈密顿函数 H 不含有某个广坐标 q_时,广义动量 P_守恒,对带电粒子在螺绕环磁场中的漂移问题进行了讨论.可看到处理该问题时,能避免用近似法求解微分方程,而...本文从时变场的场方程出发,分别给出带电粒子的拉格朗日函数及哈密顿函数.依据哈密顿函数 H 不含有某个广坐标 q_时,广义动量 P_守恒,对带电粒子在螺绕环磁场中的漂移问题进行了讨论.可看到处理该问题时,能避免用近似法求解微分方程,而得到较为满意的结果.展开更多
文摘A photon structure is advanced based on the experimental evidence and the vector potential quantization at a single photon level. It is shown that the photon is neither a point particle nor an infinite wave but behaves rather like a local “wave-corpuscle” extended over a wavelength, occupying a minimum quantization volume and guided by a non-local vector potential real wave function. The quantized vector potential oscillates over a wavelength with circular left or right polarization giving birth to orthogonal magnetic and electric fields whose amplitudes are proportional to the square of the frequency. The energy and momentum are carried by the local wave-corpuscle guided by the non-local vector potential wave function suitably normalized.
文摘An electromagnetic wave is a complex vortex and a potential process. This allows us to omit the Lorentz gauge, formulate a mathematically precise theory, and avoid physics discordances. The mechanism of distribution of complex waves in dielectric and electrical conductive environments was described.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金the National Natural Science Foundation of China(No.50875169)
文摘For electromagnetic governing equations formulated by magnetic vector potential and electric scalar potential,its detailed numerical implementation is achieved by using meshless method and Galerkin approach.And essential boundary and interface condition of electromagnetic field are imposed by means of Lagrange multiplier method.Furthermore,the influences of interpolation point number at essential boundary and interface on computational results are also discussed.Examples are given to validate the effects of meshless method and Lagrange multiplier approach for electromagnetic field.