期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
LOWER INEQUALITIES OF HEAT SEMIGROUPS BY USING PARABOLIC MAXIMUM PRINCIPLE 被引量:1
1
作者 胡二彦 《Acta Mathematica Scientia》 SCIE CSCD 2012年第4期1349-1364,共16页
Using parabolic maximum principle, we apply the analytic method to obtain lower comparison inequalities for non-negative weak supersolutions of the heat equation associated with a regular strongly p-local Dirichlet fo... Using parabolic maximum principle, we apply the analytic method to obtain lower comparison inequalities for non-negative weak supersolutions of the heat equation associated with a regular strongly p-local Dirichlet form on the abstract metric measure space. As an application we obtain lower estimates for heat kernels on some Riemannian manifolds. 展开更多
关键词 dirichlet form parabolic maximum principle heat kernel
下载PDF
热核下界估计的一类推广
2
作者 周艳 陈恒新 《首都师范大学学报(自然科学版)》 2011年第1期18-21,共4页
主要利用分析、概率和随机过程的方法,研究热核下界估计的条件和估计式.用γ-链条件作为中点性质的推广,得到了局部紧度量空间上热核下界估计更容易满足和验证的条件以及热核下界估计式.
关键词 自相似集 热核 体积加倍性质 dirichlet形式
下载PDF
On Heat Kernel Estimates and Parabolic Harnack Inequality for Jump Processes on Metric Measure Spaces 被引量:1
3
作者 Zhen-Qing CHEN Panki KIM Takashi KUMAGAI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第7期1067-1086,共20页
In this paper, we discuss necessary and sufficient conditions on jumping kernels for a class of jump-type Markov processes on metric measure spaces to have scale-invariant finite range parabolic Harnack inequality.
关键词 dirichlet form jump process jumping kernel parabolic Harnack inequality heat kernel estimates
原文传递
Symmetric jump processes and their heat kernel estimates 被引量:2
4
作者 CHEN Zhen-Qing 《Science China Mathematics》 SCIE 2009年第7期1423-1445,共23页
We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a class of symmetric jump processes(or equivalently,a class of symmetric integro-differential operators).We focus on the sharp two-si... We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a class of symmetric jump processes(or equivalently,a class of symmetric integro-differential operators).We focus on the sharp two-sided estimates for the transition density functions(or heat kernels) of the processes,a priori Hlder estimate and parabolic Harnack inequalities for their parabolic functions.In contrast to the second order elliptic differential operator case,the methods to establish these properties for symmetric integro-differential operators are mainly probabilistic. 展开更多
关键词 symmetric jump process diffusion with jumps pseudo-differential operator dirichlet form a prior Holder estimates parabolic Harnack inequality global and dirichlet heat kernel estimates Lévy system
原文传递
Sharp heat kernel estimates for spectral fractional Laplacian perturbed by gradients
5
作者 Renming Song Longjie Xie Yingchao Xie 《Science China Mathematics》 SCIE CSCD 2020年第11期2343-2362,共20页
Using Duhamel’s formula,we prove sharp two-sided estimates for the spectral fractional Laplacian’s heat kernel with time-dependent gradient perturbation in bounded C^1,1 domains.In addition,we obtain a gradient esti... Using Duhamel’s formula,we prove sharp two-sided estimates for the spectral fractional Laplacian’s heat kernel with time-dependent gradient perturbation in bounded C^1,1 domains.In addition,we obtain a gradient estimate as well as the Holder continuity of the heat kernel’s gradient. 展开更多
关键词 spectral fractional Laplacian dirichlet heat kernel Kato class gradient estimate
原文传递
On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application
6
作者 Jian Wang 《Communications in Mathematics and Statistics》 SCIE 2018年第4期493-508,共16页
We establish explicit and sharp on-diagonal heat kernel estimates for Schrödinger semigroups with unbounded potentials corresponding to a large class of symmetric jump processes.The approach is based on recent de... We establish explicit and sharp on-diagonal heat kernel estimates for Schrödinger semigroups with unbounded potentials corresponding to a large class of symmetric jump processes.The approach is based on recent developments on the two-sided(Dirichlet)heat kernel estimates and intrinsic contractivity properties for symmetric jump processes.As a consequence,we present a more direct argument to yield asymptotic behaviors for eigenvalues of associated nonlocal operators. 展开更多
关键词 Schrödinger semigroup (dirichlet)heat kernel Intrinsic contractivity property Eigenvalue
原文传递
退化椭圆算子的特征值问题
7
作者 陈化 陈洪葛 《中国科学:数学》 CSCD 北大核心 2021年第6期833-846,共14页
本文简要介绍退化椭圆算子的特征值问题的研究结果与研究方法;以有限阶退化椭圆算子为主线,主要阐述研究其Dirichlet特征值上下界估计和渐近估计的方法与结论.
关键词 次椭圆算子 次椭圆dirichlet热核 dirichlet特征值 带权的Sobolev空间 广义Métivier指标
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部