通过深沪湾高分辨率浅地层剖面声学地层和地质钻孔沉积地层的对比,并结合沉积物的粒度、微体古生物以及AMS14C测年的综合分析,揭示了研究区晚更新世末次冰期以来的地层层序,探讨了深沪湾的古环境演变。深沪湾高分辨率浅地层剖面自上而...通过深沪湾高分辨率浅地层剖面声学地层和地质钻孔沉积地层的对比,并结合沉积物的粒度、微体古生物以及AMS14C测年的综合分析,揭示了研究区晚更新世末次冰期以来的地层层序,探讨了深沪湾的古环境演变。深沪湾高分辨率浅地层剖面自上而下划分的5个声学地层单元与钻孔岩芯划分的5个沉积地层单元具有较好的对应关系。8.2 ka BP左右,全新世海侵使得海水进入深沪湾海域,海平面低于现今海平面10~12 m,气候凉爽;7 ka BP左右海水到达现今海平面位置,并于6 ka BP左右到达最高,约比现今海平面高2~3 m,气候温暖湿润,这一时期,近岸大量裸子植物被海水淹没并被沉积物快速掩埋;5 850~5 642 a BP研究区温度降低,该降温活动持续到2 ka BP左右,气候凉爽干燥;2 ka BP以来温度逐渐上升,600 a BP左右有一个相对冷期,之后温度又逐渐上升至现今水平。展开更多
Based on the photosynthesis-respiration reversible reaction and the available statistics, we attempted to quantify the planetary seasonal exchanges of CO<sub>2</sub> between air and water from 1970 and com...Based on the photosynthesis-respiration reversible reaction and the available statistics, we attempted to quantify the planetary seasonal exchanges of CO<sub>2</sub> between air and water from 1970 and compared them to the glacial ACC cycles as reported from ice cores archives. In 2020, the overall continental absorption (AW) was 8.0 giga tonnes of carbon per year (GtC/y). Emissions into the atmosphere (EW) resulting from mineral degradation by respiration and combustion of biomass and fossil hydrocarbons were 14.7 GtC/y, an increase of 2.4% per year since 1970. The continental surplus balance (-AW+EW) of 6.7 GtC/y was shared between the atmosphere, which received 5.1 GtC/y (GATM), and the ocean which absorbed 1.6 GtC/y. This ocean contribution (OC) corresponded to 17% of the 9.2 GtC/y emissions by combustion of fossil hydrocarbons (EFOS). Analysis of the ACC oscillations during 2020 in the northern hemisphere showed that the ocean absorbed 11.1 GtC during the warm season and outgassed 9.5 GtC during the cold season. Assuming proportionality to world population, the ACC, 414 parts per million (ppm) in 2021, would reach 584 ppm in 2080, still growing at a rate of 0.6% per year. The gain of atmospheric CO<sub>2</sub> (GATM) and its absorption by the ocean (OC) were expected to peak at 7.0 and 2.2 GtC/y, respectively, in 2080. This increase in the availability of atmospheric CO<sub>2</sub> resulted in improved yields of agriculture which more than compensated for the reduction by half of food-producing areas per capita from 1970.展开更多
The highest part of the East Antarctic Ice Sheet, more than 4000 m above sea level, has been an area that has seen a considerable scientific research effort undertaken by the Chinese National Antarctic Research Expedi...The highest part of the East Antarctic Ice Sheet, more than 4000 m above sea level, has been an area that has seen a considerable scientific research effort undertaken by the Chinese National Antarctic Research Expedition, and its international collaborators, since January 2005. That includes the establishment of the most remote Of the Chinese Antarctic stations, Kunlun, at Dome A in 2009. However, the exploration and mapping of this region had been commenced many decades earlier, most notably by inland traverses of the Union of Soviet Socialist Republics during the 1957-1958 International Geophysical Year 0GY) and later; and the extensive surveys of Antarctic surface and sub-ice topography by airborne radio-echo sounding made by the US National Science Foundation-Scott Polar Research Institute-Technical University of Denmark (NSF-SPRI-TUD) in the late-1960s and the 1970s. Here we provide a history of the activities and achievements of these earlier programs. Recent topographic maps of the ice sheet surface in the Dome A region, produced using Chinese GPS data and satellite altimetry, have shown the maps compiled from the earlier data were remarkably accurate.展开更多
Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO<SUB>2</SUB> change over the glacial-interglacial cycles. At glaciation,...Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO<SUB>2</SUB> change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer periods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over two glacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced by reconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacial maximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO<SUB>2</SUB>, with the remainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrast to previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial, continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The input of light isotope enriched terrestrial carbon causes atmospheric δ<SUP>13</SUP>C to drop by about 0.3‰ at deglaciation, followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowth on land. Together with other ocean based mechanisms such as change in ocean temperature, the glacial burial hypothesis may offer a full explanation of the observed 80–100-ppmv atmospheric CO<SUB>2</SUB> change.展开更多
文摘通过深沪湾高分辨率浅地层剖面声学地层和地质钻孔沉积地层的对比,并结合沉积物的粒度、微体古生物以及AMS14C测年的综合分析,揭示了研究区晚更新世末次冰期以来的地层层序,探讨了深沪湾的古环境演变。深沪湾高分辨率浅地层剖面自上而下划分的5个声学地层单元与钻孔岩芯划分的5个沉积地层单元具有较好的对应关系。8.2 ka BP左右,全新世海侵使得海水进入深沪湾海域,海平面低于现今海平面10~12 m,气候凉爽;7 ka BP左右海水到达现今海平面位置,并于6 ka BP左右到达最高,约比现今海平面高2~3 m,气候温暖湿润,这一时期,近岸大量裸子植物被海水淹没并被沉积物快速掩埋;5 850~5 642 a BP研究区温度降低,该降温活动持续到2 ka BP左右,气候凉爽干燥;2 ka BP以来温度逐渐上升,600 a BP左右有一个相对冷期,之后温度又逐渐上升至现今水平。
文摘Based on the photosynthesis-respiration reversible reaction and the available statistics, we attempted to quantify the planetary seasonal exchanges of CO<sub>2</sub> between air and water from 1970 and compared them to the glacial ACC cycles as reported from ice cores archives. In 2020, the overall continental absorption (AW) was 8.0 giga tonnes of carbon per year (GtC/y). Emissions into the atmosphere (EW) resulting from mineral degradation by respiration and combustion of biomass and fossil hydrocarbons were 14.7 GtC/y, an increase of 2.4% per year since 1970. The continental surplus balance (-AW+EW) of 6.7 GtC/y was shared between the atmosphere, which received 5.1 GtC/y (GATM), and the ocean which absorbed 1.6 GtC/y. This ocean contribution (OC) corresponded to 17% of the 9.2 GtC/y emissions by combustion of fossil hydrocarbons (EFOS). Analysis of the ACC oscillations during 2020 in the northern hemisphere showed that the ocean absorbed 11.1 GtC during the warm season and outgassed 9.5 GtC during the cold season. Assuming proportionality to world population, the ACC, 414 parts per million (ppm) in 2021, would reach 584 ppm in 2080, still growing at a rate of 0.6% per year. The gain of atmospheric CO<sub>2</sub> (GATM) and its absorption by the ocean (OC) were expected to peak at 7.0 and 2.2 GtC/y, respectively, in 2080. This increase in the availability of atmospheric CO<sub>2</sub> resulted in improved yields of agriculture which more than compensated for the reduction by half of food-producing areas per capita from 1970.
文摘The highest part of the East Antarctic Ice Sheet, more than 4000 m above sea level, has been an area that has seen a considerable scientific research effort undertaken by the Chinese National Antarctic Research Expedition, and its international collaborators, since January 2005. That includes the establishment of the most remote Of the Chinese Antarctic stations, Kunlun, at Dome A in 2009. However, the exploration and mapping of this region had been commenced many decades earlier, most notably by inland traverses of the Union of Soviet Socialist Republics during the 1957-1958 International Geophysical Year 0GY) and later; and the extensive surveys of Antarctic surface and sub-ice topography by airborne radio-echo sounding made by the US National Science Foundation-Scott Polar Research Institute-Technical University of Denmark (NSF-SPRI-TUD) in the late-1960s and the 1970s. Here we provide a history of the activities and achievements of these earlier programs. Recent topographic maps of the ice sheet surface in the Dome A region, produced using Chinese GPS data and satellite altimetry, have shown the maps compiled from the earlier data were remarkably accurate.
文摘Organic carbon buried under the great ice sheets of the Northern Hemisphere is suggested to be the missing link in the atmospheric CO<SUB>2</SUB> change over the glacial-interglacial cycles. At glaciation, the advancement of continental ice sheets buries vegetation and soil carbon accumulated during warmer periods. At deglaciation, this burial carbon is released back into the atmosphere. In a simulation over two glacial-interglacial cycles using a synchronously coupled atmosphere-land-ocean carbon model forced by reconstructed climate change, it is found that there is a 547-Gt terrestrial carbon release from glacial maximum to interglacial, resulting in a 60-Gt (about 30-ppmv) increase in the atmospheric CO<SUB>2</SUB>, with the remainder absorbed by the ocean in a scenario in which ocean acts as a passive buffer. This is in contrast to previous estimates of a land uptake at deglaciation. This carbon source originates from glacial burial, continental shelf, and other land areas in response to changes in ice cover, sea level, and climate. The input of light isotope enriched terrestrial carbon causes atmospheric δ<SUP>13</SUP>C to drop by about 0.3‰ at deglaciation, followed by a rapid rise towards a high interglacial value in response to oceanic warming and regrowth on land. Together with other ocean based mechanisms such as change in ocean temperature, the glacial burial hypothesis may offer a full explanation of the observed 80–100-ppmv atmospheric CO<SUB>2</SUB> change.