In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that...In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.展开更多
Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate...Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpres- sure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are ex- plained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.展开更多
An room temperature low noise anti-parallel Schottky diode based 630-720 GHz sub-harmonic mixer(SHM) is designed, built and measured. Intrinsic resonances in lowpass hammer-head filter have been adopted to prevent the...An room temperature low noise anti-parallel Schottky diode based 630-720 GHz sub-harmonic mixer(SHM) is designed, built and measured. Intrinsic resonances in lowpass hammer-head filter have been adopted to prevent the LO and RF power leak from the IF channel, while greatly minimizing the transmission line size. The mixer consists of 15 um quartz terahertz circuit and 127 um Al2 O3 IF transformer circuit. An improved lumped element equivalent noise model of SBDs guarantees the accuracy of simulation. The measurement indicates that with local oscillating(LO)signal of 2-8 mW, the lowest double sideband(DSB) conversion loss is 8.2 dB at 645 GHz,and the best DSB noise temperature is 2800 K at 657 GHz. The 3 dB bandwidth of conversion loss is 75 GHz from 638 to 715 GHz. The work IF frequency band is above 20 GHz ranging from 1 to 20 GHz with-10 dB return loss.展开更多
The Melnikov method is important for detecting the presence of transverse homoclinic orbits and the occurrence of homoclinic bifurcations. Unfortunately, the traditional Melnikov methods strongly depend on small param...The Melnikov method is important for detecting the presence of transverse homoclinic orbits and the occurrence of homoclinic bifurcations. Unfortunately, the traditional Melnikov methods strongly depend on small parameters, which do not exist in most practical systems. Those methods are limited in dealing with the systems with strong nonlinearities. This paper presents a procedure to study the chaos and sub-harmonic resonance of strongly nonlinear practical systems by employing a homotopy method that is used to extend the Melnikov functions to the strongly nonlinear systems. Applied to a given example, the procedure shows the effectiveness via the comparison of the theoretical results and the numerical simulation.展开更多
The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-har...The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.展开更多
It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method( HAM) is proposed to study ...It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method( HAM) is proposed to study the sub-harmonic resonances of highly nonlinear parameter excited oscillating systems with absolute value terms. The non-smoothness of absolute value terms is handled by means of an iteration approach with Fourier expansion. Two typical examples are employed to illustrate the validity and flexibility of this approach. The square residuals of the homotopy-approximations of the two examples decrease to 10-6and 10-5,respectively. Thus,the HAM combining with other methods gives hope to solve complex singular oscillating systems analytically.展开更多
We evaluated,for the first time in Turkey,the productivity of a feller buncher during clear-cut operations of two Brutian pine stands located in Canakkale,northwestern Turkey with different diameter classes and terrai...We evaluated,for the first time in Turkey,the productivity of a feller buncher during clear-cut operations of two Brutian pine stands located in Canakkale,northwestern Turkey with different diameter classes and terrain conditions.In the first stand with 24.6 cm average DBH,the feller buncher cut full trees and moved them to roadside.In the second stand with 34.3 cm average DBH,the feller buncher cut trees in two stages due to their larger diameters and the relatively steep and rough terrain conditions of the site.The effects of specific stand features,DBH and tree height measurements were assessed through statistical analysis in relation to productivity.The results indicate that the average productivity for the first stand was about 118 m^3h^-1,while it was about 80 m3h-1 in the second stand.Even though tree diameter and volume were higher in the second stand,productivity decreased by32.3%due to extra time spent on the two-stage cutting operation.The results revealed that harvesting operations should be planned carefully and the right equipment selected by accounting for different tree sizes,terrain conditions and machine specifications in order to better understand their effects on production.展开更多
The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for l...The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.展开更多
With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ...With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.展开更多
During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. Howev...During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.展开更多
基金Research Foundation of China ( No.9140A01020209JW0601)
文摘In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.
基金Project supported by the National Basic Research Program from Ministry of Science and Technology,China(Grant No.2011CB707900)the National Natural Science Foundation of China(Grant Nos.81271589,81227004,11174141,11374155,11612032,and 81301616)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BE2011110 and BK20131017)
文摘Sub-harmonic component generated from microbubbles is proven to be potentially used in noninvasive blood pressure measurement. Both theoretical and experimental studies are performed in the present work to investigate the dependence of the sub-harmonic generation on the overpressure with different excitation pressure amplitudes and pulse lengths. With 4-MHz ultrasound excitation at an applied acoustic pressure amplitude of 0.24 MPa, the measured sub-harmonic amplitude exhibits a decreasing change as overpressure increases; while non-monotonic change is observed for the applied acoustic pressures of 0.36 MPa and 0.48 MPa, and the peak position in the curve of the sub-harmonic response versus the overpres- sure shifts toward higher overpressure as the excitation pressure amplitude increases. Furthermore, the exciting pulse with long duration could lead to a better sensitivity of the sub-harmonic response to overpressure. The measured results are ex- plained by the numerical simulations based on the Marmottant model. The numerical simulations qualitatively accord with the measured results. This work might provide a preliminary proof for the optimization of the noninvasive blood pressure measurement through using sub-harmonic generation from microbubbles.
基金supported by National Key Basic Research Program of China (grant No.2015CB755406)
文摘An room temperature low noise anti-parallel Schottky diode based 630-720 GHz sub-harmonic mixer(SHM) is designed, built and measured. Intrinsic resonances in lowpass hammer-head filter have been adopted to prevent the LO and RF power leak from the IF channel, while greatly minimizing the transmission line size. The mixer consists of 15 um quartz terahertz circuit and 127 um Al2 O3 IF transformer circuit. An improved lumped element equivalent noise model of SBDs guarantees the accuracy of simulation. The measurement indicates that with local oscillating(LO)signal of 2-8 mW, the lowest double sideband(DSB) conversion loss is 8.2 dB at 645 GHz,and the best DSB noise temperature is 2800 K at 657 GHz. The 3 dB bandwidth of conversion loss is 75 GHz from 638 to 715 GHz. The work IF frequency band is above 20 GHz ranging from 1 to 20 GHz with-10 dB return loss.
基金Project supported by the National Natural Science Foundation of China(No.10632040)
文摘The Melnikov method is important for detecting the presence of transverse homoclinic orbits and the occurrence of homoclinic bifurcations. Unfortunately, the traditional Melnikov methods strongly depend on small parameters, which do not exist in most practical systems. Those methods are limited in dealing with the systems with strong nonlinearities. This paper presents a procedure to study the chaos and sub-harmonic resonance of strongly nonlinear practical systems by employing a homotopy method that is used to extend the Melnikov functions to the strongly nonlinear systems. Applied to a given example, the procedure shows the effectiveness via the comparison of the theoretical results and the numerical simulation.
基金Project supported by the National Natural Science Foundation of China (No.50275024)
文摘The 1/3 sub-harmonic solution for the Duffing's with damping equation was investigated by using the methods of harmonic balance and numerical integration. The assumed solution is introduced, and the domain of sub-harmonic frequencies was found. The asymptotical stability of the subharmonic resonances and the sensitivity of the amplitude responses to the variation of damping coefficient were examined. Then, the subharmonic resonances were analyzed by using the techniques from the general fractal theory. The analysis indicates that the sensitive dimensions of the system time-field responses show sensitivity to the conditions of changed initial perturbation, changed damping coefficient or the amplitude of excitation, thus the sensitive dimension can clearly describe the characteristic of the transient process of the subharmonic resonances.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272209)the State Key Laboratory of Ocean Engineering(Grant No.GKZD010059)
文摘It is difficult to obtain analytic approximations of nonlinear problems such as parameter excited system with strong nonlinearity. An analytic approach based on the homotopy analysis method( HAM) is proposed to study the sub-harmonic resonances of highly nonlinear parameter excited oscillating systems with absolute value terms. The non-smoothness of absolute value terms is handled by means of an iteration approach with Fourier expansion. Two typical examples are employed to illustrate the validity and flexibility of this approach. The square residuals of the homotopy-approximations of the two examples decrease to 10-6and 10-5,respectively. Thus,the HAM combining with other methods gives hope to solve complex singular oscillating systems analytically.
文摘We evaluated,for the first time in Turkey,the productivity of a feller buncher during clear-cut operations of two Brutian pine stands located in Canakkale,northwestern Turkey with different diameter classes and terrain conditions.In the first stand with 24.6 cm average DBH,the feller buncher cut full trees and moved them to roadside.In the second stand with 34.3 cm average DBH,the feller buncher cut trees in two stages due to their larger diameters and the relatively steep and rough terrain conditions of the site.The effects of specific stand features,DBH and tree height measurements were assessed through statistical analysis in relation to productivity.The results indicate that the average productivity for the first stand was about 118 m^3h^-1,while it was about 80 m3h-1 in the second stand.Even though tree diameter and volume were higher in the second stand,productivity decreased by32.3%due to extra time spent on the two-stage cutting operation.The results revealed that harvesting operations should be planned carefully and the right equipment selected by accounting for different tree sizes,terrain conditions and machine specifications in order to better understand their effects on production.
文摘The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.
基金supported by the National Natural Science Foundation of China under Grant Nos.62022022 and 62101107the National Key R&D Program of China under Grant No.2018YFB1801502+1 种基金China Postdoctoral Science Foundation under Grant No.2021TQ0057ZTE Industry-Uni⁃versity-Institute Cooperation Funds.
文摘With the development of wireless communication,the 6G mobile communication technology has received wide attention.As one of the key technologies of 6G,terahertz(THz)communication technology has the characteristics of ultra-high bandwidth,high security and low environmental noise.In this paper,a THz duplexer with a half-wavelength coupling structure and a sub-harmonic mixer operating at 216 GHz and 204 GHz are designed and measured.Based on these key devices,a 220 GHz frequency-division multiplexing communication system is proposed,with a real-time data rate of 10.4 Gbit/s for one channel and a transmission distance of 15 m.The measured constellation diagram of two receivers is clearly visible,the signal-to-noise ratio(SNR)is higher than 22 dB,and the bit error ratio(BER)is less than 10^(−8).Furthermore,the high definition(HD)4K video can also be transmitted in real time without stutter.
文摘During the design process, multipacting effect has been taken into consideration using a 2D simulation code MultiPac and all of the corners are rounded to suppress the multipacting effect in the pill-box cavity. However, unexpected multipacting effect prevents the increase of the input power when the magnetic field of focusing coils is added after adequate conditioning and a novel method is adopted to suppress it by introducing extra coils to counteract the field. This paper focuses on the simulation of multipacting effect in different magnetic field configurations. The experimental observations and simulation results of multipacting effect are presented and details of the multipacting process are also analyzed.