Drip-irrigation is increasingly applied in maize (Zea mays L.) production in sub-humid region. It is cdtical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In t...Drip-irrigation is increasingly applied in maize (Zea mays L.) production in sub-humid region. It is cdtical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In this study, the Hybrid-Maize model was calibrated and applied in a sub-humid Heilongjiang Province in Northeast China to estimate irrigation requirements for drip- irrigated maize during different crop physiological development stages and under diverse agro-climatic conditions. Using dimensionless scales, the whole growing season of maize was divided into diverse development stages from planting to maturity. Drip-irrigation dates and irrigation amounts in each irrigation event were simulated and summarized in 30-year simulation from 1981 to 2010. The maize harvest area of Heilongjiang Province was divided into 10 agro-climatic zones based on growing degree days, arid index, and temperature seasonality. The simulated results indicated that seasonal irrigation requirements and water stress during different growth stages were highly related to initial soil water content and distribution of seasonal precipitation. In the experimental site, the average irrigation amounts and times ranged from 48 to 150 mm with initial soil water content decreasing from 100 to 20% of the maximum soil available water. Additionally, the earliest drip-irrigation event might occur during 3- to 8-leaf stage. The water stress could occur at any growth stages of maize, even in wet years with abundant total seasonal rainfall but poor distribution. And over 50% of grain yield loss could be caused by extended water stress during the kernel setting window and grain filling period. It is estimated that more than 94% of the maize harvested area in Heilongjiang Province needs to be irrigated although the yield increase varied (0 to 109%) in diverse agro-climatic zones. Consequently, at least 14% of more maize production could be achieved through drip-irrigation systems in Heilongjiang Province compared to rainfed conditions.展开更多
A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE...A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.展开更多
基金supported by the Key Technology R&D Program of China during the 12th Five-year Plan period (2014BAD12B05)the National Natural Science Foundation of China (51479211, 51621061)the Chinese Scholarship Council (201506350059)
文摘Drip-irrigation is increasingly applied in maize (Zea mays L.) production in sub-humid region. It is cdtical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In this study, the Hybrid-Maize model was calibrated and applied in a sub-humid Heilongjiang Province in Northeast China to estimate irrigation requirements for drip- irrigated maize during different crop physiological development stages and under diverse agro-climatic conditions. Using dimensionless scales, the whole growing season of maize was divided into diverse development stages from planting to maturity. Drip-irrigation dates and irrigation amounts in each irrigation event were simulated and summarized in 30-year simulation from 1981 to 2010. The maize harvest area of Heilongjiang Province was divided into 10 agro-climatic zones based on growing degree days, arid index, and temperature seasonality. The simulated results indicated that seasonal irrigation requirements and water stress during different growth stages were highly related to initial soil water content and distribution of seasonal precipitation. In the experimental site, the average irrigation amounts and times ranged from 48 to 150 mm with initial soil water content decreasing from 100 to 20% of the maximum soil available water. Additionally, the earliest drip-irrigation event might occur during 3- to 8-leaf stage. The water stress could occur at any growth stages of maize, even in wet years with abundant total seasonal rainfall but poor distribution. And over 50% of grain yield loss could be caused by extended water stress during the kernel setting window and grain filling period. It is estimated that more than 94% of the maize harvested area in Heilongjiang Province needs to be irrigated although the yield increase varied (0 to 109%) in diverse agro-climatic zones. Consequently, at least 14% of more maize production could be achieved through drip-irrigation systems in Heilongjiang Province compared to rainfed conditions.
基金part of the projects(49890330,30230230 and 30070429)supported by the National Natural Science Foundation of China(NSFC)project(G1999011707)supported by the National Key Basic Research Support Funds,China(NKBRSF).
文摘A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.