α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ...α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.展开更多
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM...TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.展开更多
The ultrafine powders of YBa2Cu3O7-x with the size of 100nm were synthesized by Sol-Gel process using cit-rate as complex and ammonium hydroxide to adjust pH of solu-tion. The process of Sol formation and Gel polymeri...The ultrafine powders of YBa2Cu3O7-x with the size of 100nm were synthesized by Sol-Gel process using cit-rate as complex and ammonium hydroxide to adjust pH of solu-tion. The process of Sol formation and Gel polymerization of YBa2Cu3O7-x in the Sol-Gel synthetic reaction has bee studied. The particle size ,pruity, sintering activity and superconducting properties of YBa2Cu3O7-x prepared by Sol-Gel method are better than by solid state reaction.展开更多
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r...The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.展开更多
Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the...Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.展开更多
The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particl...The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particles were characterized by the methods of thermo gravimetric and differential thermal analysis (TG DTA), X ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively.展开更多
The morphology and the formation of Y2BaCuO5 phase in powder melting processed YBa2Cu3O7-x superconductors were investigated. The experimental results show the heat treatment can not change the shape of Y2BaCuO5 parti...The morphology and the formation of Y2BaCuO5 phase in powder melting processed YBa2Cu3O7-x superconductors were investigated. The experimental results show the heat treatment can not change the shape of Y2BaCuO5 particles in powder melting processed samples. The formation of round Y2BaCuO5 phase is due to relative content of each constitution of precursor powders in powder melting process. For powder melting process, the excessive liquid phase is eliminated, which restrains the preferred growth of Y2BaCuO5 particles.展开更多
The properties of La 2O 3 doped molybdenum powder were studied. The La 2O 3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO 3) 3 doped MoO 2 in hydrogen decrease the inten...The properties of La 2O 3 doped molybdenum powder were studied. The La 2O 3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO 3) 3 doped MoO 2 in hydrogen decrease the intensity of feature energy loss peak of molybdenum substrate; but increase that of peak of Mo?3d. The surface of molybdenum powder exposed to the atmosphere can be reduced because the surface is mainly covered with La 2O 3 nanoparticles. As a result, the capability of anti oxidation of molybdenum is improved.展开更多
Effects of particle size (A:d50 = 336. 9 μm, B:d50 =123.5μm, C: d50=19.5 μm, D: dso=2.21μm) and content (1 wt% , 3 wt% , 5 wt% , 7 wt% ) of silicon powder on cold crushing strength (CCS) , pore size dis...Effects of particle size (A:d50 = 336. 9 μm, B:d50 =123.5μm, C: d50=19.5 μm, D: dso=2.21μm) and content (1 wt% , 3 wt% , 5 wt% , 7 wt% ) of silicon powder on cold crushing strength (CCS) , pore size distribution and microstructure of Al2O3 - ZrO2 - C refractories coked at high temperature had been investigated by means of mercury porosimeter, SEM, EDS, tic. The results indicated that particle size and content of silicon powder affected the cold crushing strength of coked specimens. It increased with the addition of silicon powder and its finer particle size. However, it decreased greatly when using too fine silicon powder. The particle size and content of silicon powder also impacted the phase evolution and microstructure of coked specimens, much more β-SiC whiskers constituted network structure and well distributed in specimens with reduction of their slenderness ratios when finer silicon powder was added, corresponding to that, the specimens' pore size distribution range became narrower with smaller pore diameter, but β-SiC whiskers were distributed sparsely and the specific pore volume of small pores increased when much finer powder was added. It was worthly mentioned that some nitride could form in specimens with addition of appropriate particle size and content of silicon powder.展开更多
The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic ...The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic process. The experimental results show that the rare earth doping can increase the aspect axial ratio of needle α-FeOOH grains. its anti-sintering capability during the heat-treatment and the thermostability of γ-Fe2O3 magnetic properties. The magnetic properties of γ-Fe2O3 doping with rare earth are as follows: the coercivity Hc=36.3 kA/m (445 Oe), the ratio saturation magnetization σs=90.4μWbm/kg (72 emu/g), the ratio remanent magnetization σr=54 μWbm/kg (43 emu/g), and the temperature coefficient of remanent magnetization of γ-Fe2O3 doping with 0.1 mol% Dy can reach -5 ×10-4℃-1.展开更多
The aim of the research was to develop E-glass/jute fiber reinforced epoxy composites with an addition of Al<sub>2</sub>O<sub>3</sub> and bone powder by using hand layup technique and to compar...The aim of the research was to develop E-glass/jute fiber reinforced epoxy composites with an addition of Al<sub>2</sub>O<sub>3</sub> and bone powder by using hand layup technique and to compare tribological properties of these composites under similar test conditions. The wear experiments were designed according to Taguchi’s (L<sub>27</sub>) orthogonal array with three control variables such as sliding velocity, filler content and normal load. The results indicated that the normal load for Al<sub>2</sub>O<sub>3</sub> and filler content for bone powder emerged as the significant factors affecting specific wear rate of hybrid composites. An addition of 10 wt% of bone powder or Al<sub>2</sub>O<sub>3</sub> into E-glass/jute fiber reinforced epoxy composites increased the wear resistance considerably, and natural waste bone powder can be used instead of ceramic filler Al<sub>2</sub>O<sub>3</sub> in hybrid composites. After the analysis of control factors, an optimal factor setting has been suggested for specific wear rate and coefficient of friction. Further, the scanning electron microscopy (SEM) images for worn surfaces of hybrid composites were studied. Finally, a confirmation test was carried out to validate the results.展开更多
The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 3...The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 360/20, revolution speed of 300.9 r/min, powder-filling ratio of 10.88%, ball-filling ratio of 20.53%-23.88%, and grinding time of approximately 6 h. The discrete element method(DEM) was employed to analyze relationship between the noisy-power dissipation and the grinding efficiency, and equations describing the relationship were derived. The mean particle size of the ground powder decreased with a decrease in the degree of noisy-power dissipation, while the grinding efficiency and the amount of specific impact power used decreased with an increase in the degree of noisy-power dissipation.展开更多
The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influenc...The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.展开更多
X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of differ...X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of different heat-treatment temperatures and with various amounts.The powders were derived from the polyacrylamide gel method.The results show that,the wet gels prepared by polyacrylamide perform a unique crystallization behavior in the process of drying,comparing with some customary preparation such as melt processing.The main crystal phase and crystallization sequence of Li2O-Al2O3-SiO2 micro-powders have no distinct with addition of Eu2O3,Gd2O3 or Er2O3,while the crystallization temperature of the β-spodumene decreased and the amount of the β-spodumene increased.展开更多
A new compound K6FeNb15O42 was prepared for the first time by solid state reaction in K2O-Fe2O3-Nb2O5 ternary system. The X-ray powder diffraction data of the title compound was measured. K6FeNb15 O42 crystallizes in ...A new compound K6FeNb15O42 was prepared for the first time by solid state reaction in K2O-Fe2O3-Nb2O5 ternary system. The X-ray powder diffraction data of the title compound was measured. K6FeNb15 O42 crystallizes in the hexagonal system with unit cell parameters, a = 9. 1320(4) A ,c = 12. 0670(9) A , and space group P63/mcm (193) , z = 1. The calculated and measured densities are 4. 489 g/cm3 and 4. 485 g. cm3, respectively.展开更多
A new compound K6Ti0.67Nb15.33O42 was prepared for the first time by solid state reaction in K2O-Ni2O3-Nb2O5 ternary system. The new compound was characterized by electron probe, X-ray powder diffraction and DTA. The ...A new compound K6Ti0.67Nb15.33O42 was prepared for the first time by solid state reaction in K2O-Ni2O3-Nb2O5 ternary system. The new compound was characterized by electron probe, X-ray powder diffraction and DTA. The result of X-ray powder diffraction shows that K6Ti0.67Nb15.33O42 crystallizes the hexagonal system with unit cell parameters a = 9. 1341(5) A ,c=12. 090(1)A . and space group P62/mcm(193 ).展开更多
Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characte...Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.展开更多
基金Project (2006BAB02B05-04- 01/02) supported by the National Key Technologies R&D Program of China
文摘α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.
文摘TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.
文摘The ultrafine powders of YBa2Cu3O7-x with the size of 100nm were synthesized by Sol-Gel process using cit-rate as complex and ammonium hydroxide to adjust pH of solu-tion. The process of Sol formation and Gel polymerization of YBa2Cu3O7-x in the Sol-Gel synthetic reaction has bee studied. The particle size ,pruity, sintering activity and superconducting properties of YBa2Cu3O7-x prepared by Sol-Gel method are better than by solid state reaction.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(2010BB4074)supported by the Natural Science Foundation of Chongqing Municipality,ChinaProject(2010ZD-02)supported by the State Key Laboratory for Advanced Metals and Materials,China
文摘The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps.
基金Project(5JJ3010) supported by the Natural Science Foundation of Hunan Province, China
文摘Ultrafine alumina power was obtained by calcining the precursor at 1 200 ℃ for 2 h, which was prepared by homogeneous precipitation method using aluminium salts and urea as raw materials. The effects of anions on the morphology, particle size, surface area and configuration of the precursors were studied. The results show that the reactions of urea with aluminium nitrate and aluminium chloride result in agglomerates gels with bad filtering performance, the morphology is fibrillar. Aluminium sulphate-urea reactions result in the direct formation of amorphous powders with good filtering performance, of which morphology are regular spherical particles with larger granularity and smaller surface area. The reaction of mutual compound of aluminium sulphate and aluminium nitrate with molar ratio of 40:60 with urea can produce precursor with good filtering performance, spherical morphology, and uniform granularity distribution in the particle size range of 2-3 μm.
文摘The precursor of ultrafine In 2O 3 powder was prepared by the hydrolysis, peptization and gelation of InCl 3·4H 2O used as raw material. After calcination, ultrafine In 2O 3 powder was obtained. The particles were characterized by the methods of thermo gravimetric and differential thermal analysis (TG DTA), X ray diffractometry (XRD) and transmission electron microscopy (TEM), respectively.
基金Funded by the National Natural Science Foundation of China (50432050)the National High Technology Research and Development Program of China(2007AA03Z241)
文摘The morphology and the formation of Y2BaCuO5 phase in powder melting processed YBa2Cu3O7-x superconductors were investigated. The experimental results show the heat treatment can not change the shape of Y2BaCuO5 particles in powder melting processed samples. The formation of round Y2BaCuO5 phase is due to relative content of each constitution of precursor powders in powder melting process. For powder melting process, the excessive liquid phase is eliminated, which restrains the preferred growth of Y2BaCuO5 particles.
文摘The properties of La 2O 3 doped molybdenum powder were studied. The La 2O 3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO 3) 3 doped MoO 2 in hydrogen decrease the intensity of feature energy loss peak of molybdenum substrate; but increase that of peak of Mo?3d. The surface of molybdenum powder exposed to the atmosphere can be reduced because the surface is mainly covered with La 2O 3 nanoparticles. As a result, the capability of anti oxidation of molybdenum is improved.
文摘Effects of particle size (A:d50 = 336. 9 μm, B:d50 =123.5μm, C: d50=19.5 μm, D: dso=2.21μm) and content (1 wt% , 3 wt% , 5 wt% , 7 wt% ) of silicon powder on cold crushing strength (CCS) , pore size distribution and microstructure of Al2O3 - ZrO2 - C refractories coked at high temperature had been investigated by means of mercury porosimeter, SEM, EDS, tic. The results indicated that particle size and content of silicon powder affected the cold crushing strength of coked specimens. It increased with the addition of silicon powder and its finer particle size. However, it decreased greatly when using too fine silicon powder. The particle size and content of silicon powder also impacted the phase evolution and microstructure of coked specimens, much more β-SiC whiskers constituted network structure and well distributed in specimens with reduction of their slenderness ratios when finer silicon powder was added, corresponding to that, the specimens' pore size distribution range became narrower with smaller pore diameter, but β-SiC whiskers were distributed sparsely and the specific pore volume of small pores increased when much finer powder was added. It was worthly mentioned that some nitride could form in specimens with addition of appropriate particle size and content of silicon powder.
文摘The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic process. The experimental results show that the rare earth doping can increase the aspect axial ratio of needle α-FeOOH grains. its anti-sintering capability during the heat-treatment and the thermostability of γ-Fe2O3 magnetic properties. The magnetic properties of γ-Fe2O3 doping with rare earth are as follows: the coercivity Hc=36.3 kA/m (445 Oe), the ratio saturation magnetization σs=90.4μWbm/kg (72 emu/g), the ratio remanent magnetization σr=54 μWbm/kg (43 emu/g), and the temperature coefficient of remanent magnetization of γ-Fe2O3 doping with 0.1 mol% Dy can reach -5 ×10-4℃-1.
文摘The aim of the research was to develop E-glass/jute fiber reinforced epoxy composites with an addition of Al<sub>2</sub>O<sub>3</sub> and bone powder by using hand layup technique and to compare tribological properties of these composites under similar test conditions. The wear experiments were designed according to Taguchi’s (L<sub>27</sub>) orthogonal array with three control variables such as sliding velocity, filler content and normal load. The results indicated that the normal load for Al<sub>2</sub>O<sub>3</sub> and filler content for bone powder emerged as the significant factors affecting specific wear rate of hybrid composites. An addition of 10 wt% of bone powder or Al<sub>2</sub>O<sub>3</sub> into E-glass/jute fiber reinforced epoxy composites increased the wear resistance considerably, and natural waste bone powder can be used instead of ceramic filler Al<sub>2</sub>O<sub>3</sub> in hybrid composites. After the analysis of control factors, an optimal factor setting has been suggested for specific wear rate and coefficient of friction. Further, the scanning electron microscopy (SEM) images for worn surfaces of hybrid composites were studied. Finally, a confirmation test was carried out to validate the results.
基金supported by the Inert Anode Material Production and Application in Electrolytic Production of Aluminium program of the Yunnan Aluminium Yonxin Aluminium Co. Ltd
文摘The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 360/20, revolution speed of 300.9 r/min, powder-filling ratio of 10.88%, ball-filling ratio of 20.53%-23.88%, and grinding time of approximately 6 h. The discrete element method(DEM) was employed to analyze relationship between the noisy-power dissipation and the grinding efficiency, and equations describing the relationship were derived. The mean particle size of the ground powder decreased with a decrease in the degree of noisy-power dissipation, while the grinding efficiency and the amount of specific impact power used decreased with an increase in the degree of noisy-power dissipation.
基金Item Sponsored by Provincial Natural Science Foundation of Jiangsu of China(BK2000012)
文摘The composite coating was prepared by thermal spray welding after making composite powder,which is composed of Ni-based self-melted alloy and AlOceramic powder including nano,sub-micron and micron powders.The influences of contents and sizes of AlOon the structure and wearability were investigated.The results show that the wear resistance of the coating would be increased greatly by adding AlO,but the spray weldability decreases with increasing AlOcontent.So there is an optimal content of AlOpowder.The composite coating with AlOnano or sub-micron powder of 0.5% has the best abrasive resistance,while the optimal content of AlOmicron powder is 1 %.
文摘X-ray powder diffraction and Fourier transform infrared spectroscopy were applied for characterization of Li2O-Al2O3-SiO2 glass-ceramic powders doped with Eu2O3,Gd2O3 and Er2O3,respectively,in the conditions of different heat-treatment temperatures and with various amounts.The powders were derived from the polyacrylamide gel method.The results show that,the wet gels prepared by polyacrylamide perform a unique crystallization behavior in the process of drying,comparing with some customary preparation such as melt processing.The main crystal phase and crystallization sequence of Li2O-Al2O3-SiO2 micro-powders have no distinct with addition of Eu2O3,Gd2O3 or Er2O3,while the crystallization temperature of the β-spodumene decreased and the amount of the β-spodumene increased.
基金Fund by International Centre for Dlffractlon Data.
文摘A new compound K6FeNb15O42 was prepared for the first time by solid state reaction in K2O-Fe2O3-Nb2O5 ternary system. The X-ray powder diffraction data of the title compound was measured. K6FeNb15 O42 crystallizes in the hexagonal system with unit cell parameters, a = 9. 1320(4) A ,c = 12. 0670(9) A , and space group P63/mcm (193) , z = 1. The calculated and measured densities are 4. 489 g/cm3 and 4. 485 g. cm3, respectively.
基金Funded by International Centre for Diffraction Data.
文摘A new compound K6Ti0.67Nb15.33O42 was prepared for the first time by solid state reaction in K2O-Ni2O3-Nb2O5 ternary system. The new compound was characterized by electron probe, X-ray powder diffraction and DTA. The result of X-ray powder diffraction shows that K6Ti0.67Nb15.33O42 crystallizes the hexagonal system with unit cell parameters a = 9. 1341(5) A ,c=12. 090(1)A . and space group P62/mcm(193 ).
基金supported by the National Natural Science Foundation of China (No.50574075)Program for New Century Excellent Talents in University(No.NCET-05-0873)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20060700011)
文摘Since Cu-Al powder characteristics have important effects on the preparation of Cu/Al2O3 composite, the apparent activation energy of Al internal oxidation reaction in Cu-Al pre-alloyed powders with different characteristics was calculated in the present investigation. The microstructure and properties of the synthesized Cu/Al2O3 were studied. The results show that high-energy milling can obviously promote internal oxidation of Al in Cu-Al powders in the same solid solubility. At the same milling conditions and internal oxidation parameters, the solid solution of Al in Cu either in low or high amount will result in the poor microstructure and properties of the Cu/Al2O3 composite. Subsequently, when high-energy milling and internal oxidation are synchronously used to prepare the Cu/Al2O3 composite, there should be an appropriate solubility and milling effect for the pre-alloyed powders.