Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has be...An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.展开更多
There are many brands of activated alumina powders in the market and the products from different manufacturers exist subtle differences. In this work, four brands of activated alumina powder which are the mainstream p...There are many brands of activated alumina powders in the market and the products from different manufacturers exist subtle differences. In this work, four brands of activated alumina powder which are the mainstream products in China with the same marked particle size of 2-3 μm were added to corundum castables to investigate the effect of different activated alumina powder on properties of corundum castables. It is found that the multi-peak distribution, round-shape particle,low impurities content of alumina powder are of great benefit to the improvement of the overall performance of castables.Obvious CA6 frame structure formed in castables matrix is conductive to improving the thermal shock resistance and high temperature strength of castables. One kind of domestic alumina micropowder studied in this work has good application value and prospect in corundum castables because of the excellent comprehensive performance.展开更多
The influence of three different Al2O3 powder art self-flowing alumina castabie was studied , Max-imum compaction of sample wascomputed by An-dresen Equation . The result showed that the Al2O3 powder, which has much s...The influence of three different Al2O3 powder art self-flowing alumina castabie was studied , Max-imum compaction of sample wascomputed by An-dresen Equation . The result showed that the Al2O3 powder, which has much smaller particle size, could improve the microstructure and the mechanical properties of castabie under room temperature and high temperature. With the same powder size, the room temperature strength of the castabie added with Al2O3 powder properties of which were altered by adding mineralizing agent, was higher than that of the castabie added with common Al2O3 powder, but the flowability of these three different castabie was almost thesame.展开更多
To satisfy the requirements of alumina castables in specific environment and enhance their properties,alumina castables were prepared using tabular alumina,various alumina powders(07RAL,15RA,22RABL,40CA,99-20um,and 99...To satisfy the requirements of alumina castables in specific environment and enhance their properties,alumina castables were prepared using tabular alumina,various alumina powders(07RAL,15RA,22RABL,40CA,99-20um,and 99-325mesh),and calcium aluminate cement as main raw materials,and heat treating at 110,1000,1600℃,respectively.Their flowability and physical properties were tested,and the morphology was researched.The results show that compared with calcined alumina and tabular alumina powders,reactive alumina has higher specific surface area and better filling performance leading to lower water demand and higher viscosity,and the castables prepared with reactive alumina have higher CCS and CMOR after heat treating at 110,1000 and 1600℃as well as lower PLC than those with calcined alumina and tabular alumina powders.展开更多
To study the effect of the particle size of industrial alumina powder on the properties of active alumina micropowder(α-Al_(2)O_(3) micropowder),the fine powders with the median diameter of 50,30,10,and 5 pm,respecti...To study the effect of the particle size of industrial alumina powder on the properties of active alumina micropowder(α-Al_(2)O_(3) micropowder),the fine powders with the median diameter of 50,30,10,and 5 pm,respectively,were obtained by grinding industrial alumina powder(the median diameter of 80 pm),and the active alumina micropowders were prepared by firing the industrial alumina powders before and after grinding at 1320℃ for 5 h.The effect of the particle size of the industrial alumina powder on the microstructure and properties of the active alumina micropowder was researched.The results indicate that the initial particle size of the industrial alumina powder has a great influence on the grain morphology of the active alumina micropowder;when the median diameter is larger than 30 pm,the α-Al_(2)O_(3) grains show wormlike aggregates state after calcination and when it is around or less than 10 pm,the α-Al_(2)O_(3) are round,spherical and well dispersed grains with the particle size of 0.3-1.0 pm.With the initial particle size of the industrial alumina powder decreasing,the α-Al_(2)O_(3) phase transition rate increases and the true density gradually increases;moreover,the α-Al_(2)O_(3) powder shows better dispersity and flowability.展开更多
A zirconia alumina powder with a near spherical shape and an average size of 0.1~0.2 μm was prepared by co precipitation. XRD analysis shows that α Al 2O 3 phase may be directly transformed from amorphous in calcin...A zirconia alumina powder with a near spherical shape and an average size of 0.1~0.2 μm was prepared by co precipitation. XRD analysis shows that α Al 2O 3 phase may be directly transformed from amorphous in calcining the hydroxide composite. The ZrO 2 Al 2O 3 composite ceramics manufactured from this powder has the maximum fracture toughness of 9 MPa·m -1/2 at 15% ZrO 2 and 740 MPa fracture strength at 5% ZrO 2. Zirconia grains about 1 μm in diameter are dispersed uniformly in the alumina ceramic matrix.展开更多
The microstructures of nanosized alumina powders prepared by sol gel routine were systematically studied with transmission electron microscopy and X ray diffractometer. It was found that the morphologies of alumina ge...The microstructures of nanosized alumina powders prepared by sol gel routine were systematically studied with transmission electron microscopy and X ray diffractometer. It was found that the morphologies of alumina gel powders change in the orders of caterpillar thorn granular dumbbell shaped structures during calcining at temperatures from 20?℃ to 800?℃, 1?200?℃ and 1?300?℃. The caterpillar shaped structure composed of strings with a diameter of 5?nm.展开更多
The key reason for SO_(2) formation during the production of a residue hydrogenation catalyst support was identified and subsequent emission reduction solutions were then investigated and verified systematically.The r...The key reason for SO_(2) formation during the production of a residue hydrogenation catalyst support was identified and subsequent emission reduction solutions were then investigated and verified systematically.The results demonstrated that carbon-containing organic materials,including sesbania powder and cellulose,did not completely decompose over the temperature range of 350−600℃during the heating stage of the calcination process,but rather underwent a condensation reaction within the same temperature range to form carbon-containing species with a lower ratio of hydrogen to carbon and a higher condensation degree,which promoted the decomposition of sulfate to form SO_(2).Systematic experimental work revealed that three different measures,i.e.,applying the staged calcination method,reducing the heating rate,and increasing the air flow rate,during the calcination process could all achieve the effect of reducing SO_(2) emissions.展开更多
An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was exami...An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was examined by Xray diffraction. The morphology and microstructure of the milled powders were monitored by scanning electron microscopy and transmission electron microscopy. It was found that the formation of this composite was completed after 15 and 30 h of milling time in systems (1) and (2), respectively. More milling energy was required for the formation of this composite in system (2) due to the lubricant properties of HaBO3 and also its decomposition to HBO2 and B2O3 during milling. On the basis of X-ray diffraction patterns and thermodynamic calculations, this composite was formed by highly exothermic mechanically induced self-sustaining reactions (MSR) in both systems. The MSR mode took place around 9 h and 25 h of milling in systems (1) and (2), respectively. At the end of milling (15 h for system (1) and 30 h for system (2)) the grain size of about 35-50 nm was obtained in both systems.展开更多
The liquid-phase coating method was used to deposit Y2O3 ceramic on the surface of α-Al2O3. The coated-Al2O3p/6061AI composites were produced using squeeze casting technology. The microstructure and tensile propertie...The liquid-phase coating method was used to deposit Y2O3 ceramic on the surface of α-Al2O3. The coated-Al2O3p/6061AI composites were produced using squeeze casting technology. The microstructure and tensile properties of the composites were analysed and studied. The results showed that the coated AI2O3 particles are able to disperse homogeneously in the aluminum liquid. The microstructure of the composites is more even in comparison with that of as-received powders. The tensile testing indicated that mechanical properties of the coated-AI2O3p/6061AI composites are better than those of uncoated particles. In the composite with 30% volume fraction, the tensile strength, yield strength as well as elongation is increased by 29.8%, 38.4% and 10.3%, respectively. The SEM analysis of fracture indicated that the dimples of the coated-Al2O3p/6061Al composites are more even.展开更多
In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or...In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.展开更多
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
文摘An intensive study of the particle size distribution of four commercial ultrafine alumina powders to obtain information about the powder agglomeration and relate them to the compactibility and the sinterability has been made.
文摘There are many brands of activated alumina powders in the market and the products from different manufacturers exist subtle differences. In this work, four brands of activated alumina powder which are the mainstream products in China with the same marked particle size of 2-3 μm were added to corundum castables to investigate the effect of different activated alumina powder on properties of corundum castables. It is found that the multi-peak distribution, round-shape particle,low impurities content of alumina powder are of great benefit to the improvement of the overall performance of castables.Obvious CA6 frame structure formed in castables matrix is conductive to improving the thermal shock resistance and high temperature strength of castables. One kind of domestic alumina micropowder studied in this work has good application value and prospect in corundum castables because of the excellent comprehensive performance.
文摘The influence of three different Al2O3 powder art self-flowing alumina castabie was studied , Max-imum compaction of sample wascomputed by An-dresen Equation . The result showed that the Al2O3 powder, which has much smaller particle size, could improve the microstructure and the mechanical properties of castabie under room temperature and high temperature. With the same powder size, the room temperature strength of the castabie added with Al2O3 powder properties of which were altered by adding mineralizing agent, was higher than that of the castabie added with common Al2O3 powder, but the flowability of these three different castabie was almost thesame.
文摘To satisfy the requirements of alumina castables in specific environment and enhance their properties,alumina castables were prepared using tabular alumina,various alumina powders(07RAL,15RA,22RABL,40CA,99-20um,and 99-325mesh),and calcium aluminate cement as main raw materials,and heat treating at 110,1000,1600℃,respectively.Their flowability and physical properties were tested,and the morphology was researched.The results show that compared with calcined alumina and tabular alumina powders,reactive alumina has higher specific surface area and better filling performance leading to lower water demand and higher viscosity,and the castables prepared with reactive alumina have higher CCS and CMOR after heat treating at 110,1000 and 1600℃as well as lower PLC than those with calcined alumina and tabular alumina powders.
文摘To study the effect of the particle size of industrial alumina powder on the properties of active alumina micropowder(α-Al_(2)O_(3) micropowder),the fine powders with the median diameter of 50,30,10,and 5 pm,respectively,were obtained by grinding industrial alumina powder(the median diameter of 80 pm),and the active alumina micropowders were prepared by firing the industrial alumina powders before and after grinding at 1320℃ for 5 h.The effect of the particle size of the industrial alumina powder on the microstructure and properties of the active alumina micropowder was researched.The results indicate that the initial particle size of the industrial alumina powder has a great influence on the grain morphology of the active alumina micropowder;when the median diameter is larger than 30 pm,the α-Al_(2)O_(3) grains show wormlike aggregates state after calcination and when it is around or less than 10 pm,the α-Al_(2)O_(3) are round,spherical and well dispersed grains with the particle size of 0.3-1.0 pm.With the initial particle size of the industrial alumina powder decreasing,the α-Al_(2)O_(3) phase transition rate increases and the true density gradually increases;moreover,the α-Al_(2)O_(3) powder shows better dispersity and flowability.
文摘A zirconia alumina powder with a near spherical shape and an average size of 0.1~0.2 μm was prepared by co precipitation. XRD analysis shows that α Al 2O 3 phase may be directly transformed from amorphous in calcining the hydroxide composite. The ZrO 2 Al 2O 3 composite ceramics manufactured from this powder has the maximum fracture toughness of 9 MPa·m -1/2 at 15% ZrO 2 and 740 MPa fracture strength at 5% ZrO 2. Zirconia grains about 1 μm in diameter are dispersed uniformly in the alumina ceramic matrix.
文摘The microstructures of nanosized alumina powders prepared by sol gel routine were systematically studied with transmission electron microscopy and X ray diffractometer. It was found that the morphologies of alumina gel powders change in the orders of caterpillar thorn granular dumbbell shaped structures during calcining at temperatures from 20?℃ to 800?℃, 1?200?℃ and 1?300?℃. The caterpillar shaped structure composed of strings with a diameter of 5?nm.
基金support from the China Petrochemical Corporation(Sinopec Group 121043-2).
文摘The key reason for SO_(2) formation during the production of a residue hydrogenation catalyst support was identified and subsequent emission reduction solutions were then investigated and verified systematically.The results demonstrated that carbon-containing organic materials,including sesbania powder and cellulose,did not completely decompose over the temperature range of 350−600℃during the heating stage of the calcination process,but rather underwent a condensation reaction within the same temperature range to form carbon-containing species with a lower ratio of hydrogen to carbon and a higher condensation degree,which promoted the decomposition of sulfate to form SO_(2).Systematic experimental work revealed that three different measures,i.e.,applying the staged calcination method,reducing the heating rate,and increasing the air flow rate,during the calcination process could all achieve the effect of reducing SO_(2) emissions.
文摘An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was examined by Xray diffraction. The morphology and microstructure of the milled powders were monitored by scanning electron microscopy and transmission electron microscopy. It was found that the formation of this composite was completed after 15 and 30 h of milling time in systems (1) and (2), respectively. More milling energy was required for the formation of this composite in system (2) due to the lubricant properties of HaBO3 and also its decomposition to HBO2 and B2O3 during milling. On the basis of X-ray diffraction patterns and thermodynamic calculations, this composite was formed by highly exothermic mechanically induced self-sustaining reactions (MSR) in both systems. The MSR mode took place around 9 h and 25 h of milling in systems (1) and (2), respectively. At the end of milling (15 h for system (1) and 30 h for system (2)) the grain size of about 35-50 nm was obtained in both systems.
基金This investigation was supported by the National Natural Science Foundation of China(No.59771014 and 50071019).The supports are gratefully acknowledged.
文摘The liquid-phase coating method was used to deposit Y2O3 ceramic on the surface of α-Al2O3. The coated-Al2O3p/6061AI composites were produced using squeeze casting technology. The microstructure and tensile properties of the composites were analysed and studied. The results showed that the coated AI2O3 particles are able to disperse homogeneously in the aluminum liquid. The microstructure of the composites is more even in comparison with that of as-received powders. The tensile testing indicated that mechanical properties of the coated-AI2O3p/6061AI composites are better than those of uncoated particles. In the composite with 30% volume fraction, the tensile strength, yield strength as well as elongation is increased by 29.8%, 38.4% and 10.3%, respectively. The SEM analysis of fracture indicated that the dimples of the coated-Al2O3p/6061Al composites are more even.
文摘In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.