Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it caus...Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features.展开更多
mean shift目标跟踪使用任一个单独特征都很难对大幅度的光照、背景变化和车辆大范围运动具有强鲁棒性,如单一的颜色特征对光照较为敏感,光照突变容易导致目标丢失。当背景颜色和目标颜色相近时也易造成目标丢失,因此利用目标的单一特...mean shift目标跟踪使用任一个单独特征都很难对大幅度的光照、背景变化和车辆大范围运动具有强鲁棒性,如单一的颜色特征对光照较为敏感,光照突变容易导致目标丢失。当背景颜色和目标颜色相近时也易造成目标丢失,因此利用目标的单一特征信息往往很难实现鲁棒的目标跟踪。文章提出基于颜色和LBP多特征mean shift跟踪方法,使跟踪结果不再过分依赖某一特征,增强了对背景变化、目标大范围运动的鲁棒性。展开更多
文摘Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features.