It is well acknowledged to all that an active equalization strategy can overcome the inconsistency of lithium-ion cell's voltage and state of charge(SOC)in series-connected lithium-ion battery(LIB)pack in the elec...It is well acknowledged to all that an active equalization strategy can overcome the inconsistency of lithium-ion cell's voltage and state of charge(SOC)in series-connected lithium-ion battery(LIB)pack in the electric vehicle application.In this regard,a novel dual threshold trigger mechanism based active equalization strategy(DTTMbased AES)is proposed to overcome the inherent inconsistency of cells and to improve the equalization efficiency for a series-connected LIB pack.First,a modified dual-layer inductor equalization circuit is constructed to make it possible for the energy transfer path optimization.Next,based on the designed dual threshold trigger mechanism provoked by battery voltage and SOC,an active equalization strategy is proposed,each single cell's SOC in the battery packs is estimated using the extended Kalman particle filter algorithm.Besides,on the basis of the modified equalization circuit,the improved particle swarm optimization is adopted to optimize the energy transfer path with aiming to reduce the equalization time.Lastly,the simulation and experimental results are provided to validate the proposed DTTM-based AES.展开更多
The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the opera...The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time.展开更多
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric games.In the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)...This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric games.In the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the leader.However,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of states.To this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected utility.The authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE strategy.Then the authors turn to multi-player models,where there exists one player adopting an equalizer ZD strategy.The authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE strategy.Finally,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.展开更多
针对电池制造工艺和使用环境不同所引起的单体间电量不均衡问题,结合双向开关电源理论提出了一种集中式能量转移型单体-整组双向电池均衡方案,根据电池组内单体剩余电量(state of charge,SOC)在电池组内部进行电量双向转移,采用反馈电...针对电池制造工艺和使用环境不同所引起的单体间电量不均衡问题,结合双向开关电源理论提出了一种集中式能量转移型单体-整组双向电池均衡方案,根据电池组内单体剩余电量(state of charge,SOC)在电池组内部进行电量双向转移,采用反馈电路保证均衡电流恒定。通过实验获得电池单体开路电压的滞回特性曲线,并结合充电和放电状态下SOC与开路电压对应关系估计各电池单体SOC,以SOC一致作为均衡目标。实验结果表明,所设计的均衡器均衡电流达到3A,可以满足电池系统均衡需求。展开更多
基金supported by the Artificial intelligence technology project of Xi'an Science and Technology Bureau(No.21RGZN0014).
文摘It is well acknowledged to all that an active equalization strategy can overcome the inconsistency of lithium-ion cell's voltage and state of charge(SOC)in series-connected lithium-ion battery(LIB)pack in the electric vehicle application.In this regard,a novel dual threshold trigger mechanism based active equalization strategy(DTTMbased AES)is proposed to overcome the inherent inconsistency of cells and to improve the equalization efficiency for a series-connected LIB pack.First,a modified dual-layer inductor equalization circuit is constructed to make it possible for the energy transfer path optimization.Next,based on the designed dual threshold trigger mechanism provoked by battery voltage and SOC,an active equalization strategy is proposed,each single cell's SOC in the battery packs is estimated using the extended Kalman particle filter algorithm.Besides,on the basis of the modified equalization circuit,the improved particle swarm optimization is adopted to optimize the energy transfer path with aiming to reduce the equalization time.Lastly,the simulation and experimental results are provided to validate the proposed DTTM-based AES.
基金Supported by the National Natural Science Foundation of China(51507012)Beijing Nova Program(Z171100001117063)
文摘The inconsistency of the cells in a battery pack can affect its lifespan,safety and reliability in the electric vehicles. The balanced system is an effective technique to reduce its inconsistency and improve the operating performance. A hybrid equilibrium strategy based on decision combing battery state-of-charge( SOC) and voltage has been proposed. The battery SOC is estimated through an improved least squares method. An equalization hardware in loop( HIL) platform has been constructed. Based on this HIL platform,equilibrium strategy has been verified under the constant-current-constant-voltage( CCCV) and dynamicstresstest( DST) conditions. Experimental results indicate that the proposed hybrid equalization strategy can achieve good balance effect and avoid the overcharge and over-discharge of the battery pack at the same time.
基金supported by the National Key Research and Development Program of China under Grant No.2022YFA1004700the National Natural Science Foundation of China under Grant No.62173250Shanghai Municipal Science and Technology Major Project under Grant No.2021SHZDZX0100.
文摘This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric games.In the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the leader.However,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of states.To this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected utility.The authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE strategy.Then the authors turn to multi-player models,where there exists one player adopting an equalizer ZD strategy.The authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE strategy.Finally,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.
文摘针对电池制造工艺和使用环境不同所引起的单体间电量不均衡问题,结合双向开关电源理论提出了一种集中式能量转移型单体-整组双向电池均衡方案,根据电池组内单体剩余电量(state of charge,SOC)在电池组内部进行电量双向转移,采用反馈电路保证均衡电流恒定。通过实验获得电池单体开路电压的滞回特性曲线,并结合充电和放电状态下SOC与开路电压对应关系估计各电池单体SOC,以SOC一致作为均衡目标。实验结果表明,所设计的均衡器均衡电流达到3A,可以满足电池系统均衡需求。