在IPv6物联网中,RPL路由模型已得到广泛的认可.然而对于规模较大的多跳网络结构,RPL面临着部分转发节点路由容量较大的问题.而且物联子网中扁平化的地址结构使得这一问题更为突出.设计了支持IPv6地址自动分配的轻量级树型转发模型TFAD(t...在IPv6物联网中,RPL路由模型已得到广泛的认可.然而对于规模较大的多跳网络结构,RPL面临着部分转发节点路由容量较大的问题.而且物联子网中扁平化的地址结构使得这一问题更为突出.设计了支持IPv6地址自动分配的轻量级树型转发模型TFAD(tree forwarding model with address automatically distributed),将物联子网中的节点构造成一棵层次转发树,树节点的IPv6地址在子树范围内高度聚合.各节点只需存储与其子节点数相当的转发项,即可完成TFAD模型的数据转发.此外,设计了TFAD模型的备份父节点机制,当网络出现故障时能够以子树为单位进行网络拓扑重构,实现物联子网的快速路由恢复.实验验证了TFAD模型的高效路由存储性能以及快速的路由学习能力和故障后路由恢复能力.展开更多
文摘在IPv6物联网中,RPL路由模型已得到广泛的认可.然而对于规模较大的多跳网络结构,RPL面临着部分转发节点路由容量较大的问题.而且物联子网中扁平化的地址结构使得这一问题更为突出.设计了支持IPv6地址自动分配的轻量级树型转发模型TFAD(tree forwarding model with address automatically distributed),将物联子网中的节点构造成一棵层次转发树,树节点的IPv6地址在子树范围内高度聚合.各节点只需存储与其子节点数相当的转发项,即可完成TFAD模型的数据转发.此外,设计了TFAD模型的备份父节点机制,当网络出现故障时能够以子树为单位进行网络拓扑重构,实现物联子网的快速路由恢复.实验验证了TFAD模型的高效路由存储性能以及快速的路由学习能力和故障后路由恢复能力.