The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li...The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.展开更多
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However...Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe...The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.展开更多
Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnect...Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used.展开更多
A broadband(BB)mode is observed by collective Thomson scattering diagnostics in repeatable shots of EAST and analyzed for the first time.This BB mode usually grows during L–H transitions,featuring a BB quasi-coherent...A broadband(BB)mode is observed by collective Thomson scattering diagnostics in repeatable shots of EAST and analyzed for the first time.This BB mode usually grows during L–H transitions,featuring a BB quasi-coherent mode with increasing frequency.During H-mode operations,it is characterized by steady-state BB in the high-frequency range(f~200–2000 k Hz),at the electron scale(k_(θ)ρ_(s)=1–2),mainly driven by the density gradient,and is sensitive to the value ofηein the region of interest(ρ=0.4–0.8),wherehe=(R/L_(Te))/(R/L_(ne))is the ratio of the normalized electron temperature gradient and density gradient,and the regionρ=0.4–0.8 usually has a relatively low collisionality(v_(eff)<5).The frequency of BB is found to be dependent on the electron temperature and density gradient,which is a typical feature of electron-driven turbulence.A negative correlation between the energy confinement and the intensity of the BB turbulence during H-mode has been found,which indicates a strong electron thermal transport induced by the BB turbulence.The BB significantly decreases the electron temperature and causes flatter electron temperature profiles in the region of interest(ρ=0.4–0.8),thus makingηedecrease and the BB destabilize further.These characteristics of BB are related to the theoretical density gradient-driven trapped electron mode.It should be noted that this mode is not observed by other diagnostics in EAST,and shows very different features to the coherent modes in the edge.展开更多
Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a...Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a porous carbon(PC)of unimodal super-micropore(micro-PC)is realized.Such precise single-molecule confinement enables sufficient activity center exposure and maximum electron-transfer from micro-PC to POM,which well stabilizes the electron-accepting molecules and thoroughly activates its inherent multi-electron redox-activity.In particular,the redox-activities and electron-accepting properties of the confined POM molecule are revealed to be super-micropore pore size-dependent by experiment and spectroscopy as well as theoretical calculation.Meanwhile,the molecularly dispersed POM molecules confined steadily in the“cage”of micro-PC exhibit unprecedented large-negative-potential stability and multiple-peak redox-activity at an ultra-low loading of~11.4 wt%.As a result,the fabricated solid-state supercapacitor achieves a remarkable areal capacitance,ultrahigh energy and power density of 443 mF cm^(-2),0.12 mWh cm^(-2)and 21.1 mW cm^(-2),respectively.This work establishes a novel strategy for the precise confinement of single POM molecule,providing a versatile approach to inducing the intrinsic activity of POMs for advanced energy-storage systems.展开更多
We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulen...We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or threedimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet’s radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5to k-1,depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.展开更多
We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide(LiTFSI)and lithium difluorosulfimide(LiFSI),respectively...We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide(LiTFSI)and lithium difluorosulfimide(LiFSI),respectively.Our experimental results demonstrate a clear dependence of the confinement effect on the anion type,particularly for water-rich solutions,in which the precipitation of crystalized ice under cooling process induces the formation of freeze-concentrated phase confined between pore wall and core ice.As this liquid layer becomes thinner,the freeze-concentrated phase experiences glass transition at increasingly higher temperatures in solutions of LiTFSI.However,differently,for solutions of LiFSI and LiCl,this secondary confinement has a negligible effect on the glass transition of solutions confined wherein.These different behaviors emphasize the obvious difference in the dynamic properties’response of LiTFSI and LiFSI solutions to spatial confinement and particularly to the presence of the hydrophilic pore wall.展开更多
The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a...The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications.展开更多
The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process...The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.展开更多
The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s...The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.展开更多
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por...In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.展开更多
In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaos...As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified K...In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to thepre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in thecurrent building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelasticresponse of the building frame is modelled by considering the plastic hinges formed on each beam and columnelement for different concrete classes and stirrups spacings. The models are subjected to non-linear static analyses.The differences between confined concrete models are comparatively investigated at both reinforced concretemember and system levels. Based on the results of the comparative analysis, it is revealed that the column behaviouris mostly influenced by the choice of model, due to axial loads and confinement effects, while the beams areless affected, and also it is observed that the differences exhibited in the moment-curvature response of columncross-sections do not significantly affect the overall behaviour of the global system. This highlights the critical roleof model selection relative to the concrete strength and stirrup spacing of the member.展开更多
A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the elec...A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.展开更多
In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many...In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms.展开更多
With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issue...With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20246 and 51872108)the Fundamental Research Funds for the Central Universitiesthe Advanced Talents Incubation Program of Hebei University(521100221039)
文摘The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.
基金the National Natural Science Foundation of China(Grant Nos.61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金supported by the National Natural Science Foundation of China(52372201,52125202,52202247)the Natural Science Foundation of Jiangsu Province(1192261031693)the Fundamental Research Funds for the Central Universities(30919011110,1191030558)。
文摘The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.
基金supported by the National Natural Science Foundation of China(Nos.62075209,62275243,and 61675193)the Beijing Natural Science Foundation(No.Z200006).
文摘Directly modulated 850-nm vertical-cavity surface-emitting lasers(VCSELs)with the advantages of low cost,high modulation speed,good reliability,and low power consumption,are the key sources in the optical interconnects with multimode fibers for the supercomputers,data centers,and machine learning applications[1−3].Typically,non-return-tozero(NRZ)modulation format is used.
基金supported by National Natural Science Foundation of China(No.11875286)the National Key R&D Program of China(No.2019YFE03010002)CAS President’s International Fellowship Initiative(No.2022VMB0007)。
文摘A broadband(BB)mode is observed by collective Thomson scattering diagnostics in repeatable shots of EAST and analyzed for the first time.This BB mode usually grows during L–H transitions,featuring a BB quasi-coherent mode with increasing frequency.During H-mode operations,it is characterized by steady-state BB in the high-frequency range(f~200–2000 k Hz),at the electron scale(k_(θ)ρ_(s)=1–2),mainly driven by the density gradient,and is sensitive to the value ofηein the region of interest(ρ=0.4–0.8),wherehe=(R/L_(Te))/(R/L_(ne))is the ratio of the normalized electron temperature gradient and density gradient,and the regionρ=0.4–0.8 usually has a relatively low collisionality(v_(eff)<5).The frequency of BB is found to be dependent on the electron temperature and density gradient,which is a typical feature of electron-driven turbulence.A negative correlation between the energy confinement and the intensity of the BB turbulence during H-mode has been found,which indicates a strong electron thermal transport induced by the BB turbulence.The BB significantly decreases the electron temperature and causes flatter electron temperature profiles in the region of interest(ρ=0.4–0.8),thus makingηedecrease and the BB destabilize further.These characteristics of BB are related to the theoretical density gradient-driven trapped electron mode.It should be noted that this mode is not observed by other diagnostics in EAST,and shows very different features to the coherent modes in the edge.
基金the National Natural Science Foundation of China(No.51902222,5197222 and 62174013)
文摘Aggregation of polyoxometalates(POM)is largely responsible for the reduced performance of POM-based energy-storage systems.To address this challenge,here,the precise confinement of single Keggin-type POM molecule in a porous carbon(PC)of unimodal super-micropore(micro-PC)is realized.Such precise single-molecule confinement enables sufficient activity center exposure and maximum electron-transfer from micro-PC to POM,which well stabilizes the electron-accepting molecules and thoroughly activates its inherent multi-electron redox-activity.In particular,the redox-activities and electron-accepting properties of the confined POM molecule are revealed to be super-micropore pore size-dependent by experiment and spectroscopy as well as theoretical calculation.Meanwhile,the molecularly dispersed POM molecules confined steadily in the“cage”of micro-PC exhibit unprecedented large-negative-potential stability and multiple-peak redox-activity at an ultra-low loading of~11.4 wt%.As a result,the fabricated solid-state supercapacitor achieves a remarkable areal capacitance,ultrahigh energy and power density of 443 mF cm^(-2),0.12 mWh cm^(-2)and 21.1 mW cm^(-2),respectively.This work establishes a novel strategy for the precise confinement of single POM molecule,providing a versatile approach to inducing the intrinsic activity of POMs for advanced energy-storage systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174306 and 12004308)the Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-JQ-02)。
文摘We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or threedimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet’s radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5to k-1,depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974385 and 91956101).
文摘We present findings on the effect of nanometer-sized silica-based pores on the glass transition of aqueous solutions of lithium bis(trifluoromethane)sulfonimide(LiTFSI)and lithium difluorosulfimide(LiFSI),respectively.Our experimental results demonstrate a clear dependence of the confinement effect on the anion type,particularly for water-rich solutions,in which the precipitation of crystalized ice under cooling process induces the formation of freeze-concentrated phase confined between pore wall and core ice.As this liquid layer becomes thinner,the freeze-concentrated phase experiences glass transition at increasingly higher temperatures in solutions of LiTFSI.However,differently,for solutions of LiFSI and LiCl,this secondary confinement has a negligible effect on the glass transition of solutions confined wherein.These different behaviors emphasize the obvious difference in the dynamic properties’response of LiTFSI and LiFSI solutions to spatial confinement and particularly to the presence of the hydrophilic pore wall.
基金the financial support of the National Natural Science Foundation of China (No. 22038001)。
文摘The separation of C2H4from C_(2)H_(6)/C_(2)H_(4)mixture is of great importance but difficult and energy intensive. Adsorptive separation provides an alternative approach to ameliorate this situation. Here, we report a microporous metal–organic framework(MOF) BUT-315-a as a C_(2)H_(6)-selective adsorbent for the separation of C2H6/C2H4gas mixture. BUT-315-a combines good IAST selectivity of 2.35 with high C_(2)H_(6)uptake of 97.5 cm^(3)g^(-1), giving superior high separation potential ΔQ(2226 mmol L^(-1)) for equimolar C_(2)H_(6)/C_(2)H_(4) at 298 K. Impressively, such excellent performance can be preserved at higher temperatures of 313 and 323 K to accommodate industrial conditions. Efficient dynamic separation performance of BUT-315-a has been demonstrated by column breakthrough experiments under varied temperatures and gas ratios. Theoretical calculations further reveal multiple synergistic interactions between C_(2)H_(6) and the framework. This work highlights a new benchmark material for C_(2)H_(6)/C_(2)H_(4)separation and provides guidance for designing adsorbent for separation applications.
文摘The implosion plasma drive fusion pellet of inertial confinement is a concept related to nuclear fusion,a process in which atomic nuclei combine to form heavier nuclei,releasing a large amount of energy in the process.The implosion plasma drive fusion pellet is a potential fuel source for achieving controlled nuclear fusion.ICF(inertial confinement fusion)is a technique used to achieve fusion by compressing a small target containing fusion fuel to extremely high densities and temperatures using lasers or other methods.The implosion plasma drive fusion pellet concept involves using a small pellet of deuterium and tritium(two isotopes of hydrogen)as fusion fuel,and then rapidly heating and compressing it using a pulsed power system.The implosion process creates a high-pressure plasma that ignites the fusion reactions,releasing energy in the form of neutrons and charged particles.The resulting energy can be captured and used for power generation.This technology is still in the experimental stage,and significant research and development is required to make it commercially viable.However,it has the potential to provide a virtually limitless source of clean energy with no greenhouse gas emissions or long-term radioactive waste.Be that as it may,ICF has to get exact control of the implosion process,mitigate insecurities,and create modern materials and advances to resist the extraordinary conditions of the combined response.
基金the National Natural Science Foundation of China(Nos.11988102,92052201,11825204,12032016,12372220,and 12372219)。
文摘The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law.
基金Project supported by the National Natural Science Foundation of China (Grant No.42074139)the Natural Science Foundation of Jilin Province,China (Grant No.20210101140JC)。
文摘In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金the National Natural Science Foundation of China(12074348,12261141661,62204223,52072345,and 12174348)the China Postdoctoral Science Foundation(2022TQ0307)the Natural Science Foundation of Henan Province(242300421179 and 222102310664).
文摘As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
文摘In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigatedat member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to thepre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in thecurrent building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelasticresponse of the building frame is modelled by considering the plastic hinges formed on each beam and columnelement for different concrete classes and stirrups spacings. The models are subjected to non-linear static analyses.The differences between confined concrete models are comparatively investigated at both reinforced concretemember and system levels. Based on the results of the comparative analysis, it is revealed that the column behaviouris mostly influenced by the choice of model, due to axial loads and confinement effects, while the beams areless affected, and also it is observed that the differences exhibited in the moment-curvature response of columncross-sections do not significantly affect the overall behaviour of the global system. This highlights the critical roleof model selection relative to the concrete strength and stirrup spacing of the member.
文摘A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.
文摘In many situations rocks are subjected to biaxial loading and the failure process is controlled by the lateral confinement stresses. The importance of confinement stresses has been recognized in the literature by many researchers, in particular, its influence on strength and on the angle of fracture, but still there is not a clear description for the influence of confining stress on the crack propagation mechanism of rocks. This paper presents a numerical pro- cedure for the analysis of crack propagation in rock-like ma- terials under compressive biaxial loads. Several numerical simulations of biaxial tests on the rock specimen have been carried out by a bonded particle model (BPM) and the influ- ence of confinement on the mechanism of crack propagation from a single flaw in rock specimens is studied. For this purpose, several biaxial compressive tests on rectangular spec- imens under different confinement stresses were modeled in (2 dimensional particle flow code) PFC2D. The results show that wing cracks initiate perpendicular to the flaw and trend toward the direction of major stress, however, when the lat- eral stresses increase, this initiation angle gets wider. Also it is concluded that in addition to the material type, the initiation direction of the secondary cracks depends on confine- ment stresses, too. Besides, it is understood that secondary cracks may be produced from both tensile and shear mechanisms.
基金supported by Basic Science Center Project of National Natural Science Foundation of China under grant No.51788104the National Natural Science Foundation of China (grant nos.51772301 and 21773264)+1 种基金the National Key R&D Program of China (grant no.2016YFA0202500)the “Strategic Priority Research Program” of the Chinese Academy of Sciences (grant no.XDA09010300)
文摘With high theoretical energy density and the natural abundance of S, lithium-sulfur (Li-S) batteries areconsidered to be the promising next generation high-energy rechargeable energy storage devices. How-ever, issues including electronical insulation of S, the lithium polysulfides (LiPSs) dissolution and the shortcycle lifespan have prevented Li-S batteries from being practical applied. Feasible settlements of confiningLiPSs to reduce the loss of active substances and improve the cycle stability include wrapping sulfur withcompact layers, designing matrix with porous or hollow structures, adding adsorbents owning stronginteraction with sulfur and inserting polysulfide barriers between cathodes and separators. This reviewcategorizes them into physical and chemical confinements according to the influencing mechanism. Withfurther discussion of their merits and flaws, synergy of the physical and chemical confinement is believedto be the feasible avenue that can guide Li-S batteries to the practical application.