期刊文献+
共找到4,828篇文章
< 1 2 242 >
每页显示 20 50 100
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:2
1
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching structure engineering modulation
下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures 被引量:2
2
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge Anode-free structures
下载PDF
Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries
3
作者 Qiang Ma Aoen Ma +6 位作者 Shanguang Lv Bowen Qin Yali Xu Xianxiang Zeng Wei Ling Yuan Liu Xiongwei Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期609-626,I0015,共19页
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th... Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given. 展开更多
关键词 aqueous Zn metal batteries Zn metal anode Transport behavior Solvated structure Dendrite-free
下载PDF
Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction
4
作者 Hongxing Yuan Wei Gao +2 位作者 Xinhao Wan Jianqi Ye Dan Wen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期557-564,I0013,共9页
The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received partic... The sluggish kinetics of the oxygen reduction reaction(ORR)is the bottleneck for various electrochemical energy conversion devices.Regulating the electronic structure of electrocatalysts by ligands has received particular attention in deriving valid ORR electrocatalysts.Here,the surface electronic structure of Ptbased noble metal aerogels(NMAs)was modulated by various organic ligands,among which the electron-withdrawing ligand of 4-methylphenylene effectively boosted the ORR electrocatalysis.Theoretical calculations suggested the smaller energy barrier for the transformation of O^(*) to OH^(*) and downshift the d-band center of Pt due to the interaction between 4-methylphenylene and the surface metals,thus enhancing the ORR intrinsic activity.Both Pt3Ni and Pt Pd aerogels with 4-methylphenylene decoration performed significant enhancement in ORR activity and durability in different media.Remarkably,the 4-methylphenylene modified Pt Pd aerogel exhibited the higher halfwave potential of 0.952 V and the mass activity of 10.2 times of commercial Pt/C.This work explained the effect of electronic structure on ORR electrocatalytic properties and would promote functionalized NMAs as efficient ORR electrocatalysts. 展开更多
关键词 Noble metal aerogels Surface electronic structure ORR ELECTROCATALYST Organic ligands
下载PDF
Non-flammable long chain phosphate ester based electrolyte via competitive solventized structures for high-performance lithium metal batteries
5
作者 Li Liao Zhiqiang Han +16 位作者 Xuanjie Feng Pan Luo Jialin Song Yin Shen Xiaoshuang Luo Xinpeng Li Xuanzhong Wen Bo Yu Junchen Chen Bingshu Guo Mingshan Wang Yun Huang Hongmei Zhang Mengmeng Yin Jiangtao Liu Yuanhua Lin Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期156-165,I0004,共11页
Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.... Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes. 展开更多
关键词 Non-flammable electrolyte Long chain phosphate ester Solvation structure Lithium metal batteries Battery safety
下载PDF
Transition of plasticity and fracture mode of Zr-Al-Ni-Cu bulk metallic glasses with network structures 被引量:1
6
作者 蔡安辉 丁大伟 +4 位作者 安伟科 周果君 罗云 李江鸿 彭勇宜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2617-2623,共7页
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch... Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed. 展开更多
关键词 bulk metallic glass PLASTICITY fracture mode network structure
下载PDF
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces 被引量:2
7
作者 Tong Nan Huan Zhao +3 位作者 Jinying Guo Xinke Wang Hao Tian Yan Zhang 《Opto-Electronic Science》 2024年第5期1-11,共11页
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec... Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging. 展开更多
关键词 structured light beam tri-layer metallic metasurface longitudinal polarization non-axial transmission
下载PDF
Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX_2(M= Mo,W;X= O,S,Se,Te):A comparative first-principles study 被引量:5
8
作者 曾范 张卫兵 唐壁玉 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期436-443,共8页
First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic prope... First-principle calculations with different exchange-correlation functionals, including LDA, PBE, and vd W-DF functional in the form of opt B88-vd W, have been performed to investigate the electronic and elastic properties of twodimensional transition metal dichalcogenides(TMDCs) with the formula of MX2(M = Mo, W; X = O, S, Se, Te) in both monolayer and bilayer structures. The calculated band structures show a direct band gap for monolayer TMDCs at the K point except for MoO2 and WO2. When the monolayers are stacked into a bilayer, the reduced indirect band gaps are found except for bilayer WTe2, in which the direct gap is still present at the K point. The calculated in-plane Young moduli are comparable to that of graphene, which promises possible application of TMDCs in future flexible and stretchable electronic devices. We also evaluated the performance of different functionals including LDA, PBE, and opt B88-vd W in describing elastic moduli of TMDCs and found that LDA seems to be the most qualified method. Moreover, our calculations suggest that the Young moduli for bilayers are insensitive to stacking orders and the mechanical coupling between monolayers seems to be negligible. 展开更多
关键词 transition metal dichalcogenides bilayer structures elastic properties electronic structure
下载PDF
Design for a Crane Metallic Structure Based on Imperialist Competitive Algorithm and Inverse Reliability Strategy 被引量:6
9
作者 Xiao-Ning Fan Bo Zhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期900-912,共13页
Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO... Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliabil- ity strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reli- ability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its a-percentile per- formance, thereby avoiding convergence failure, calcula- tion error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes. 展开更多
关键词 Crane metallic structure Reliability-baseddesign optimization Imperialist competitive algorithmPerformance measure approach Inverse reliabilitystrategy
下载PDF
Metal-organic Coordination Architectures of Triazole-ligands: Syntheses, Structures and Luminescent Properties 被引量:3
10
作者 王多志 孙学森 +1 位作者 张建斌 刘晨江 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第8期1236-1244,共9页
Five new transitional metal complexes with 4,4′-bis(1,2,4-triazol-1-ylmethyl)- biphenyl (L1), 1,4-bis(1,2,4-triazol-1-ylmethyl)naphthalene (L2) and 1-(1H-1,2,4-triazol-l-yl)- 3-phenyl-2-one (L3) were synt... Five new transitional metal complexes with 4,4′-bis(1,2,4-triazol-1-ylmethyl)- biphenyl (L1), 1,4-bis(1,2,4-triazol-1-ylmethyl)naphthalene (L2) and 1-(1H-1,2,4-triazol-l-yl)- 3-phenyl-2-one (L3) were synthesized and characterized by elemental analysis, IR and X-ray diffraction. Complexes 1-3 have one-dimensional (1-D) chain structures, and L1 adopts a gauche-gauche conformation with the shortest N...N distance between the two N donors in complexes 1-3; however, L2 adopts a trans-gauche conformation in complex 4. Complex 5 is a mononuclear structure, and L3 adopts a monodentate coordination mode. The fluorescence properties of ligands L1 and complexe 1 have been investigated. 展开更多
关键词 TRIAZOLE metal complexes synthesis crystal structure
下载PDF
Effects of material of metallic frame on the penetration resistances of ceramic-metal hybrid structures 被引量:7
11
作者 Xuanyi An Chao Tian +1 位作者 Qitian Sun Yongxiang Dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期77-87,共11页
The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation... The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation.Hybrid structures with rectangular cores in transverse orthogonal arrangement and slidefitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4(Ti6 Al4 V),AISI 4340 steel and 7075 aluminum alloy panels,respectively.The results showed that the hybrid structure of Ti6A14V exhibited the highest penetration resistance,followed by that of 7075 aluminum alloy with the same area density.The penetration resistance of the hybrid structure of AISI4340 steel was the lowest.The underlying mechanisms showed that the metallic material of a ceramicmetal hybrid structure can directly affect its energy absorption from the impact projectile,which further affects its penetration resistance.Different metallic frames exhibited different failure characteristics,resulting in different constraint conditions or support conditions for ceramic prisms.The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure,and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure.The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure.In addition,because the ceramic-metal hybrid structures in the present work were heterogeneous,impact position has slight influence on their penetration resistances. 展开更多
关键词 Hybrid structures ZIRCONIA toughened alumina PENETRATION resistance Long-rod PROJECTILE metalLIC FRAME
下载PDF
Fabrication and abrasive wear properties of metal matrix composites reinforced with three-dimensional network structure 被引量:2
12
作者 WANG Shouren GENG Haoran +3 位作者 LI Kunshan SONG Bo WANG Yingzi HUI Linhai 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期671-679,共9页
Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-por... Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement. 展开更多
关键词 metal matrix composites INFILTRATION fficdon and wear three dimensional network structure MICROstructure
下载PDF
Anodized metal oxide nanostructures for photoelectrochemical water splitting 被引量:3
13
作者 Ying-zhi Chen Dong-jian Jiang +2 位作者 Zheng-qi Gong Jing-yuan Li Lu-ning Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第5期584-601,共18页
Photoelectrochemical(PEC) water splitting offers the capability of harvesting, storing, and converting solar energy into clean and sustainable hydrogen energy. Metal oxides are appealing photoelectrode materials becau... Photoelectrochemical(PEC) water splitting offers the capability of harvesting, storing, and converting solar energy into clean and sustainable hydrogen energy. Metal oxides are appealing photoelectrode materials because of their easy manufacturing and relatively high stability. In particular, metal oxides prepared by electrochemical anodization are typical of ordered nanostructures, which are beneficial for light harvesting, charge transfer and transport, and the adsorption and desorption of reactive species due to their high specific surface area and rich channels. However, bare anodic oxides still suffer from low charge separation and sunlight absorption efficiencies. Accordingly, many strategies of modifying anodic oxides have been explored and investigated. In this review, we attempt to summarize the recent advances in the rational design and modifications of these oxides from processes before, during, and after anodization. Rational design strategies are thoroughly addressed for each part with an aim to boost overall PEC performance. The ongoing efforts and challenges for future development of practical PEC electrodes are also presented. 展开更多
关键词 PHOTOELECTROCHEMICAL water SPLITTING PHOTOELECTRODE metal OXIDE anodization NANOstructure structural engineering
下载PDF
Structural color of metallic glass through picosecond laser
14
作者 Yue’e Zhang Xing Tong +3 位作者 Yuqiang Yan Shuo Cao Hai-Bo Ke Wei-Hua Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期120-128,共9页
The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed duri... The alteration in surface color of metallic glasses(MGs)holds great significance in the context of microstructuredesign and commercial utility.It is essential to accurately describe the structures that are formed during the laser and colorseparation processes in order to develop practical laser coloring applications.Due to the high oxidation sensitivity of Labasedmetallic glass,it can broaden the color range but make it more complex.Structure coloring by laser processing on thesurface of La-based metallic glass can be conducted after thermoplastic forming.It is particularly important to clarify therole of structure and composition in the surface coloring process.The aim is to study the relationship between amorphoussurface structural color,surface geometry,and oxide formation by laser processing in metallic glasses.The findings revealedthat the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm^(2).In contrast,thesurface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm^(2).Consequently,this study provides a novel concept for the fundamental investigation of laser coloring and establishes a newavenue for practical application. 展开更多
关键词 metallic glass picosecond laser periodic structure OXIDES
下载PDF
Formation, Structure and Properties of Bulk Metallic Glasses 被引量:4
15
作者 Y. Li(Department of Materials Science, Faculty of Science, National University of Singapore, Lower Kent Ridge Road,Singapore 119260 E-mail:masliy@nus.edu.sg) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第2期97-110,共14页
Bulk metallic glasses with up to 72 mm critical section thickness have been obtained by conventional casting techniques and the properties of these materials, particularly the mechanical and magnetic properties have b... Bulk metallic glasses with up to 72 mm critical section thickness have been obtained by conventional casting techniques and the properties of these materials, particularly the mechanical and magnetic properties have been studied. These materials have been demonstrated to have novel properties which are fundamentally different from their crystalline counterparts. The recent status of research and development in formation, structure and properties of bulk metallic glasses is reviewed. The techniques to produce such bulk glasses are summarized and the glass forming ability and the critical cooling rate of these materials are discussed. Further consideration of the development and application of this new class of materiaIs will be proposed. 展开更多
关键词 NI ZR structure and Properties of Bulk metallic Glasses FORMATION OK Cu FIGURE
下载PDF
High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery 被引量:5
16
作者 Lu Gao Jianxin Li +3 位作者 Jingge Ju Bowen Cheng Weimin Kang Nanping Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期644-654,共11页
The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility gre... The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries. 展开更多
关键词 Hierarchical structure PA6 electrospun nanofiber membrane All-solid-state composite polymer electrolyte Lithium metal battery
下载PDF
Safety evaluation system for hydraulic metal structures based on knowledge engineering 被引量:2
17
作者 Yang Guangming Gu Chongshi 《Water Science and Engineering》 EI CAS 2008年第3期102-111,共10页
A comprehensive safety evaluation system taking the most influential factors into account has been developed to evaluate the reliability of hydraulic metal structures. Applying the techniques of AI and DB, the idea of... A comprehensive safety evaluation system taking the most influential factors into account has been developed to evaluate the reliability of hydraulic metal structures. Applying the techniques of AI and DB, the idea of a one-machine and three-base system is proposed. The framework of the three-base system has been designed and the structural framework constructed in turn. A practical example is given to illustrate the process of using this system and it can be used for comparison and analysis purposes. The key technology of the system is its ability to reorganize and improve the expert system's knowledge base by establishing the expert system. This system utilizes the computer technology inference process, making safety evaluation conclusions more reasonable and applicable to the actual situation. The system is not only advanced, but also feasible, reliable, artificially intelligent, and has the capacity to constantly grow. 展开更多
关键词 water conservancy and hydropower engineering safety evaluation one-machine and three-base system knowledge engineering hydraulic metal structure
下载PDF
Structural behavior and metallization of AsSbS_(3) at high pressure
18
作者 Tian Qin Min Wu +2 位作者 Kai Wang Ye Wu Haijun Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期436-440,共5页
The group V–VI semiconductor material getchellite (crystalline AsSbS_(3)) has garnered extensive attention due to itswonderful electronic and optical properties. The pressure engineering is one of the most effective ... The group V–VI semiconductor material getchellite (crystalline AsSbS_(3)) has garnered extensive attention due to itswonderful electronic and optical properties. The pressure engineering is one of the most effective methods to modulatecrystal structure and physical properties of semiconductor materials. In this study, the structural behavior, optical and electricalproperties of AsSbS_(3) under high pressure have been investigated systematically by in situ high-pressure experimentsfor the first time. The monoclinic structure of AsSbS_(3) remains stable up to 47.0 GPa without phase transition. The graduallattice contraction with increasing pressure results in a continuous narrowing of the bandgap then leads to pressure-inducedmetallization of AsSbS_(3) at 31.5 GPa. Our research presents a high-pressure strategy for tuning the crystal structure andphysical properties of AsSbS_(3) to expand its potential applications in electronic and optoelectronic fields. 展开更多
关键词 AsSbS_(3) structural behavior pressure-induced metallization high pressure
下载PDF
Metal cyanamides: Open-framework structure and energy conversion/storage applications 被引量:2
19
作者 Bingquan Jia Du Sun +1 位作者 Wei Zhao Fuqiang Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期347-367,I0010,共22页
Metal cyanamides are an emerging class of functional materials with potential applications in sustainable energy conversion and storage technologies such as catalysis,supercapacitors,photoluminescence and next-gen bat... Metal cyanamides are an emerging class of functional materials with potential applications in sustainable energy conversion and storage technologies such as catalysis,supercapacitors,photoluminescence and next-gen batteries.The[NCN]^(2-)as the anion,which is isolobal with[O]^(2-)endows metal cyanamides with similar physicochemical properties as oxides and chalcogenides.Whereas the unique quasI-linear structure and electronic resonance between[N=C=N]^(2-)and[N-C≡N]^(2-)of[NCN]entity bring out superior properties beyond oxides and chalcogenides.In this review,we present research status,challenges,and the recent striking progress on the metal cyanamides in the synthesis and applications.Specifically,the characteristic structures,physicochemical properties,synthetic methods with corresponding merits/demerits and latest applications in energy conversion and storage of cyanamides are summarized.The detailed outlooks for the new compounds design,morphology manipulation and potential applications are also exhibited. 展开更多
关键词 metal cyanamides structure PROPERTIES Synthesis Energy applications
下载PDF
The electrochemical characteristics of AB_(4)-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery 被引量:7
20
作者 Wenfeng Wang Xiaoxue Liu +6 位作者 Lu Zhang Shuang Zhang Wei Guo Yumeng Zhao Hongming zhang Yuan Li Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2039-2048,共10页
Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is suppos... Rare earth-Mg-Ni-based alloys with superlattice structures are new generation negative electrode materials for the nickel metal hydride batteries.Among them,the novel AB_(4)-type superlattice structure alloy is supposed to have superior cycling stability and rate capability.Yet its preparation is hindered by the crucial requirement of temperature and the special composition which is close to the other superlattice structure.Here,we prepare rare earth-Mg-Ni-based alloy and study the phase transformation of alloys to make clear the formation of AB_(4)-type phase.It is found Pr_(5)Co_(19)-type phase is converted from Ce_(5)Co_(19)-type phase and shows good stability at higher temperature compared to the Ce_(5)Co_(19)-type phase in the range of 930-970℃.Afterwards,with further 5℃increasing,AB_(4)-type superlattice structure forms at a temperature of 975℃by consuming Pr_(5)Co_(19)-type phase.In contrast with A_(5)B_(19)-type alloy,AB_(4)-type alloy has superior rate capability owing to the dominant advantages of charge transfer and hydrogen diffusion.Besides,AB_(4)-type alloy shows long lifespan whose capacity retention rates are 89.2%at the 100;cycle and 82.8%at the 200;cycle,respectively.AB_(4)-type alloy delivers 1.53 wt.%hydrogen storage capacity at room temperature and exhibits higher plateau pressure than Pr_(5)Co_(19)-type alloy.The work provides novel AB_(4)-type alloy with preferable electrochemical performance as negative electrode material to inspire the development of nickel metal hydride batteries. 展开更多
关键词 Nickel metal hydride batteries Hydrogen storage alloys AB_(4)-type superlattice structure Electrochemical performance Kinetics properties
下载PDF
上一页 1 2 242 下一页 到第
使用帮助 返回顶部