期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
广义Sublaplace算子的热核与基本解
1
作者 张震球 《数学年刊(A辑)》 CSCD 北大核心 1995年第3期288-295,共8页
本文研究了文[6,7]中提出的广义Sublaplace算子L,借助于L的特征函数,给出了热核的积分表达式与相应的Cauchy问题的解,同时还得到了L的基本解及其L ̄p估计。
关键词 广义sublaplace 算子 热核 基本解
下载PDF
广义Sublaplace算子的谱乘子定理
2
作者 张震球 宣培才 《数学学报(中文版)》 SCIE CSCD 北大核心 1998年第1期153-160,共8页
本文通过建立与广义Sublaplace算子L相关的Litlewood-Paley理论,得到L的谱乘子定理,作为该结果的应用。
关键词 广义 sublaplace算子 调和分析 谱乘子定理
原文传递
Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group
3
作者 WANG Xinjing NIU Pengcheng 《Journal of Partial Differential Equations》 CSCD 2019年第1期66-76,共11页
The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville p... The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville property of solutions on a half space and the symmetry and monotonicity of the solutions on the whole group respectively. 展开更多
关键词 HEISENBERG group FRACTIONAL sublaplace EQUATION method of MOVING planes.
原文传递
Gradient Estimates for the Heat Kernels in Higher Dimensional Heisenberg Groups 被引量:1
4
作者 Bin QIAN Department of Mathematics and Statistics, Changshu Institute of Technology, Changshu 215500, Jiangsu, China Institut de Math′ematiques de Toulouse, Universit′e de Toulouse, CNRS 5219, France. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第3期305-314,共10页
The author obtains sharp gradient estimates for the heat kernels in two kinds of higher dimensional Heisenberg groups -- the non-isotropic Heisenberg group and the Heisenberg type group Hn,m. The method used here reli... The author obtains sharp gradient estimates for the heat kernels in two kinds of higher dimensional Heisenberg groups -- the non-isotropic Heisenberg group and the Heisenberg type group Hn,m. The method used here relies on the positive property of the Bakry-Emery curvature F2 on the radial functions and some associated semigroup technics. 展开更多
关键词 Gradient estimates Г2 curvature Heat kernels sublaplace Heisenberg group
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部