The mathematical model of current methods for determining load distribution along contact lines of the instantaneously engaged teeth of gears has a defect that its numerical solution is not unique. In order to overcom...The mathematical model of current methods for determining load distribution along contact lines of the instantaneously engaged teeth of gears has a defect that its numerical solution is not unique. In order to overcome this defect, a new method based on three-dimensional finite element compliance matrix method improved by smoothing method is presented. Calculated examples of helical gears show that the new method can calculate tooth load distribution accurately and agree well with the results of experiments.展开更多
This paper presents a new approach to construct C1 continuous surfaces on N-sided regions. For C0 continuous surfaces on N-sided regions their smoothed surfaces are constructed by the integral smoothing operation with...This paper presents a new approach to construct C1 continuous surfaces on N-sided regions. For C0 continuous surfaces on N-sided regions their smoothed surfaces are constructed by the integral smoothing operation with displaced integrals. The final smoothed surfaces are C1 continuous with the original surfaces on the boundary.展开更多
文摘The mathematical model of current methods for determining load distribution along contact lines of the instantaneously engaged teeth of gears has a defect that its numerical solution is not unique. In order to overcome this defect, a new method based on three-dimensional finite element compliance matrix method improved by smoothing method is presented. Calculated examples of helical gears show that the new method can calculate tooth load distribution accurately and agree well with the results of experiments.
文摘This paper presents a new approach to construct C1 continuous surfaces on N-sided regions. For C0 continuous surfaces on N-sided regions their smoothed surfaces are constructed by the integral smoothing operation with displaced integrals. The final smoothed surfaces are C1 continuous with the original surfaces on the boundary.