Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5...Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.展开更多
Particle detection technologies have been largely advanced in ,boratory over the past decade. A neutron sphere was built to detect the decay neutron emitted from the implanted unstable nu eleus, whereas a multi-neutro...Particle detection technologies have been largely advanced in ,boratory over the past decade. A neutron sphere was built to detect the decay neutron emitted from the implanted unstable nu eleus, whereas a multi-neutron correlation spectrometer was implemented to detect the forward moving neutrons resulting from breakup reactions. Charged particle telescopes are now equipped with double sided Silicon strip detectors which have excellent energy and position resolutions. Large size gas chambers, such as resistive plate chambers, have been developed in order to achieve high Derformances related to timing or position measurements. The advances of these technologies con tribute substantially to such large science project, as LHC-CMS, and to the experiments with the radioactive nucleus beams.展开更多
The no-evolution, concordance expanding universe cosmology and no-evolution, static universe tired light model are compared against observational data on eight cosmology tests. The no-evolution tired light model is fo...The no-evolution, concordance expanding universe cosmology and no-evolution, static universe tired light model are compared against observational data on eight cosmology tests. The no-evolution tired light model is found to make a superior fit on all tests. Any attempts to introduce evolutionary corrections to improve the concordance cosmology fit on one test often worsen its fit on other tests. Light curve data of high redshift gamma ray bursts and quasars fail to support claims for cosmological time dilation due to expansion. Also, the SCP supernova light curve test results are considered to be flawed by selection effect biases. The big bang theory also has difficulty accounting for redshift quantization, for the multi-megaparsec periodicity seen in the distribution of galaxy superclusters, and for the discovery of galaxies at redshifts as high as <em>z</em> ~11.9. In overview, it is concluded that a static universe cosmology must be sought to explain the origin of the universe. One possible choice is a cosmology that predicts nonconservative tired-light redshifting in intergalactic space, the continuous creation of neutrons in space, the rate of matter creation scaling with both celestial body mass and temperature, galaxies growing progressively in size, and changing their morphology in the manner suggested by Jeans and Hubble.展开更多
Demands for new gold deposits are increasing worldwide and the need to better define lode and placer claims is a critical environmental and economic issue. Recently, interesting results have been produced using dedica...Demands for new gold deposits are increasing worldwide and the need to better define lode and placer claims is a critical environmental and economic issue. Recently, interesting results have been produced using dedicated geological information systems designed to explore for earth mineral deposits. These systems employ properties of fundamental physical fields generated by interactions of superlight elementary particles. GV technology (Geo-Vision geological direct detection radiometric and Air-Gamma technology), a revolutionary technology for exploring the earth from outer space and from inside aircraft, has been utilized to identify and precisely locate gold deposits. All elements of the Earth's crust exist in an excited state and are constantly emitting what can be called their "intrinsic radiation". The melding of science and data interpretation makes GV Technology ideal for defining both lode and placer gold deposits. The use of GV technology will improve success ratios associated with the exploration for and delineation of gold deposits and provide better definition of successful core drilling locations. The technology will also decrease the cost of defining gold deposits and since GV technology is ecologically friendly, it provides considerable reductions in environmental mitigation costs. From 1995 to 2014, GV technology has been used to identify and delineate gold deposits in Russia, Mongolia, Kirghizia, Tanzania, Ethiopia, Namibia, Australia, and the United States.展开更多
This paper discusses an absurdity that is rooted in the modern physics’ interpretation of Einstein’s relativistic mass formula when v is very close to c. Modern physics (and Einstein himself) claimed that the speed ...This paper discusses an absurdity that is rooted in the modern physics’ interpretation of Einstein’s relativistic mass formula when v is very close to c. Modern physics (and Einstein himself) claimed that the speed of a mass can never reach the speed of light. Yet at the same time they claim that it can approach the speed of light without any upper limit on how close it could get to that special speed. As we will see, this leads to some absurd predictions. If we assert that a material system cannot reach the speed of light, an important question is then, “How close can it get to the speed of light?” Is there a clear-cut boundary on the exact speed limit for an electron, as an example? Or must we settle for a mere approximation?展开更多
In previous work, the electron radius was identified as the “actual electron radius.” However, this is more accurately described as the electron radius at rest. This study reexamines the electron with an emphasis on...In previous work, the electron radius was identified as the “actual electron radius.” However, this is more accurately described as the electron radius at rest. This study reexamines the electron with an emphasis on the electron radius under motion, incorporating the effects of length contraction. The findings suggest that the radius is subject to Lorentz contraction, which has interesting implications for relativistic effects at the subatomic level.展开更多
文摘Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.
文摘Particle detection technologies have been largely advanced in ,boratory over the past decade. A neutron sphere was built to detect the decay neutron emitted from the implanted unstable nu eleus, whereas a multi-neutron correlation spectrometer was implemented to detect the forward moving neutrons resulting from breakup reactions. Charged particle telescopes are now equipped with double sided Silicon strip detectors which have excellent energy and position resolutions. Large size gas chambers, such as resistive plate chambers, have been developed in order to achieve high Derformances related to timing or position measurements. The advances of these technologies con tribute substantially to such large science project, as LHC-CMS, and to the experiments with the radioactive nucleus beams.
文摘The no-evolution, concordance expanding universe cosmology and no-evolution, static universe tired light model are compared against observational data on eight cosmology tests. The no-evolution tired light model is found to make a superior fit on all tests. Any attempts to introduce evolutionary corrections to improve the concordance cosmology fit on one test often worsen its fit on other tests. Light curve data of high redshift gamma ray bursts and quasars fail to support claims for cosmological time dilation due to expansion. Also, the SCP supernova light curve test results are considered to be flawed by selection effect biases. The big bang theory also has difficulty accounting for redshift quantization, for the multi-megaparsec periodicity seen in the distribution of galaxy superclusters, and for the discovery of galaxies at redshifts as high as <em>z</em> ~11.9. In overview, it is concluded that a static universe cosmology must be sought to explain the origin of the universe. One possible choice is a cosmology that predicts nonconservative tired-light redshifting in intergalactic space, the continuous creation of neutrons in space, the rate of matter creation scaling with both celestial body mass and temperature, galaxies growing progressively in size, and changing their morphology in the manner suggested by Jeans and Hubble.
文摘Demands for new gold deposits are increasing worldwide and the need to better define lode and placer claims is a critical environmental and economic issue. Recently, interesting results have been produced using dedicated geological information systems designed to explore for earth mineral deposits. These systems employ properties of fundamental physical fields generated by interactions of superlight elementary particles. GV technology (Geo-Vision geological direct detection radiometric and Air-Gamma technology), a revolutionary technology for exploring the earth from outer space and from inside aircraft, has been utilized to identify and precisely locate gold deposits. All elements of the Earth's crust exist in an excited state and are constantly emitting what can be called their "intrinsic radiation". The melding of science and data interpretation makes GV Technology ideal for defining both lode and placer gold deposits. The use of GV technology will improve success ratios associated with the exploration for and delineation of gold deposits and provide better definition of successful core drilling locations. The technology will also decrease the cost of defining gold deposits and since GV technology is ecologically friendly, it provides considerable reductions in environmental mitigation costs. From 1995 to 2014, GV technology has been used to identify and delineate gold deposits in Russia, Mongolia, Kirghizia, Tanzania, Ethiopia, Namibia, Australia, and the United States.
文摘This paper discusses an absurdity that is rooted in the modern physics’ interpretation of Einstein’s relativistic mass formula when v is very close to c. Modern physics (and Einstein himself) claimed that the speed of a mass can never reach the speed of light. Yet at the same time they claim that it can approach the speed of light without any upper limit on how close it could get to that special speed. As we will see, this leads to some absurd predictions. If we assert that a material system cannot reach the speed of light, an important question is then, “How close can it get to the speed of light?” Is there a clear-cut boundary on the exact speed limit for an electron, as an example? Or must we settle for a mere approximation?
文摘In previous work, the electron radius was identified as the “actual electron radius.” However, this is more accurately described as the electron radius at rest. This study reexamines the electron with an emphasis on the electron radius under motion, incorporating the effects of length contraction. The findings suggest that the radius is subject to Lorentz contraction, which has interesting implications for relativistic effects at the subatomic level.