In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions ...In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.展开更多
For the following elliptic problem {-△u-μu/|x|^2=|u|^2^*(s)-2u/|x|^s+h(x), on R^N u∈D^1,2(R^N), N≥3, 0≤μ〈μ^-=(N-2)^2/4, 0≤s〈2, where 2^*(s)=2(N-s)/N-2 is the critical Sobolev-Hardy expon...For the following elliptic problem {-△u-μu/|x|^2=|u|^2^*(s)-2u/|x|^s+h(x), on R^N u∈D^1,2(R^N), N≥3, 0≤μ〈μ^-=(N-2)^2/4, 0≤s〈2, where 2^*(s)=2(N-s)/N-2 is the critical Sobolev-Hardy exponent, h(x) ∈ (D^1,2(R^N))^*, the dual space of (D^1,2(R^N)), with h(x)≥(≠)0. By Ekeland's variational principle, subsuper solutions and a Mountain Pass theorem, the authors prove that the above problem has at least two distinct solutions if ||h||*〈CN,sAs^N-s/4-2s(1-μ/μ)^1/2, CN,s=4-2s/N-2(N-2/N+2-2s)^N+2-2s/4-2s and As = inf u∈D^1,2(R^N)/{0}∫R^N(|△↓u|^2-μu^2/|x|^2)dx/(∫R^N|u|^2^*(s)/|x|^sdx)^2/2^*(s).展开更多
The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means o...The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.展开更多
In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with ...In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.展开更多
In this article,we study the following critical problem involving the fractional Laplacian:{(−Δ)^α/2u−γu/|x|^α=λ|u|^q−2/|x|^s+|u|^2^∗α^(t)−2u/|x|^t in Ω,u=0 in R^N∖Ω,whereΩ⊂R^N(N>α)is a bounded smooth dom...In this article,we study the following critical problem involving the fractional Laplacian:{(−Δ)^α/2u−γu/|x|^α=λ|u|^q−2/|x|^s+|u|^2^∗α^(t)−2u/|x|^t in Ω,u=0 in R^N∖Ω,whereΩ⊂R^N(N>α)is a bounded smooth domain containing the origin,α∈(0,2),0≤s,t<α,1≤q<2,λ>0,2α^*(t)=2(N-t)/N-αis the fractional critical Sobolev-Hardy exponent,0≤γ<γH,and γH is the sharp constant of the Sobolev-Hardy inequality.We deal with the existence of multiple solutions for the above problem by means of variational methods and analytic techniques.展开更多
In this article, we study the existence of multiple solutions for the singular semilinear elliptic equation involving critical Sobolev-Hardy exponents -△μ-μ|x|^2^-μ=α|x|^s^-|μ|^2*(s)-2u+βα(x)|u|^...In this article, we study the existence of multiple solutions for the singular semilinear elliptic equation involving critical Sobolev-Hardy exponents -△μ-μ|x|^2^-μ=α|x|^s^-|μ|^2*(s)-2u+βα(x)|u|^r-2u,x∈R^n. By means of the concentration-compactness principle and minimax methods, we obtain infinitely many solutions which tend to zero for suitable positive parameters α,β.展开更多
This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exp...This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exponent,λ>0,p(?)r<p,p:=Np/N-p is the critical Sobolev exponent,μ>,0(?)t<p,p(?)q<p(t)=p(N-t)/N-p.The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.展开更多
In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequal...In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.展开更多
By the Mountain Pass Theorem, we study existence and multiplicity of posi- tive solutions of p-laplacian equation of the form - △pu =λf (x, u), the nonlinearity f (x, u) grows as u^δ at infinity with a singular...By the Mountain Pass Theorem, we study existence and multiplicity of posi- tive solutions of p-laplacian equation of the form - △pu =λf (x, u), the nonlinearity f (x, u) grows as u^δ at infinity with a singular coefficient, where a ∈ (p - 1,p* - 1). To manage the asymptotic behavior of its positive solutions with respect to λ, we establish a new Liouville-type theorem for the p-Laplacian operator.展开更多
文摘In this paper,we consider a singular elliptic system with both concave non-linearities and critical Sobolev-Hardy growth terms in bounded domains.By means of variational methods,the multiplicity of positive solutions to this problem is obtained.
文摘For the following elliptic problem {-△u-μu/|x|^2=|u|^2^*(s)-2u/|x|^s+h(x), on R^N u∈D^1,2(R^N), N≥3, 0≤μ〈μ^-=(N-2)^2/4, 0≤s〈2, where 2^*(s)=2(N-s)/N-2 is the critical Sobolev-Hardy exponent, h(x) ∈ (D^1,2(R^N))^*, the dual space of (D^1,2(R^N)), with h(x)≥(≠)0. By Ekeland's variational principle, subsuper solutions and a Mountain Pass theorem, the authors prove that the above problem has at least two distinct solutions if ||h||*〈CN,sAs^N-s/4-2s(1-μ/μ)^1/2, CN,s=4-2s/N-2(N-2/N+2-2s)^N+2-2s/4-2s and As = inf u∈D^1,2(R^N)/{0}∫R^N(|△↓u|^2-μu^2/|x|^2)dx/(∫R^N|u|^2^*(s)/|x|^sdx)^2/2^*(s).
基金supported by NSFC(10771085)Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Educationthe 985 Program of Jilin University
文摘The main purpose of this paper is to establish the existence of multiple solutions for singular elliptic system involving the critical Sobolev-Hardy exponents and concave-convex nonlinearities. It is shown, by means of variational methods, that under certain conditions, the system has at least two positive solutions.
文摘In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.
文摘In this article,we study the following critical problem involving the fractional Laplacian:{(−Δ)^α/2u−γu/|x|^α=λ|u|^q−2/|x|^s+|u|^2^∗α^(t)−2u/|x|^t in Ω,u=0 in R^N∖Ω,whereΩ⊂R^N(N>α)is a bounded smooth domain containing the origin,α∈(0,2),0≤s,t<α,1≤q<2,λ>0,2α^*(t)=2(N-t)/N-αis the fractional critical Sobolev-Hardy exponent,0≤γ<γH,and γH is the sharp constant of the Sobolev-Hardy inequality.We deal with the existence of multiple solutions for the above problem by means of variational methods and analytic techniques.
文摘In this article, we study the existence of multiple solutions for the singular semilinear elliptic equation involving critical Sobolev-Hardy exponents -△μ-μ|x|^2^-μ=α|x|^s^-|μ|^2*(s)-2u+βα(x)|u|^r-2u,x∈R^n. By means of the concentration-compactness principle and minimax methods, we obtain infinitely many solutions which tend to zero for suitable positive parameters α,β.
基金This research is supported by the National Natural Science Foundation of China(l0171036) and the Natural Science Foundation of South-Central University For Nationalities(YZZ03001).
文摘This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exponent,λ>0,p(?)r<p,p:=Np/N-p is the critical Sobolev exponent,μ>,0(?)t<p,p(?)q<p(t)=p(N-t)/N-p.The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.
基金Supported by NSFC(10471047)NSF Guangdong Province(05300159).
文摘In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.
基金supported by the National Natural Science Foundation of China10771032
文摘By the Mountain Pass Theorem, we study existence and multiplicity of posi- tive solutions of p-laplacian equation of the form - △pu =λf (x, u), the nonlinearity f (x, u) grows as u^δ at infinity with a singular coefficient, where a ∈ (p - 1,p* - 1). To manage the asymptotic behavior of its positive solutions with respect to λ, we establish a new Liouville-type theorem for the p-Laplacian operator.