This paper focuses on the investigation of the attachment line instability for Hybrid Laminar Flow Control(HLFC),one of the most promising drag reduction technologies for modern transport aircraft respect to high Reyn...This paper focuses on the investigation of the attachment line instability for Hybrid Laminar Flow Control(HLFC),one of the most promising drag reduction technologies for modern transport aircraft respect to high Reynolds numbers and large sweep angles.The attachment line instability also plays an important role during laminar-turbulent transition control and HLFC design on a swept wing.The overview of historical research is presented and knowledge gaps are pointed out as the conclusion.展开更多
The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simu...The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.展开更多
文摘This paper focuses on the investigation of the attachment line instability for Hybrid Laminar Flow Control(HLFC),one of the most promising drag reduction technologies for modern transport aircraft respect to high Reynolds numbers and large sweep angles.The attachment line instability also plays an important role during laminar-turbulent transition control and HLFC design on a swept wing.The overview of historical research is presented and knowledge gaps are pointed out as the conclusion.
基金supported by the Iraqi ministry of higher education and scientific research
文摘The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.