Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i...Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.展开更多
L(2,1)-labeling number of the product and the join graph on two fans are discussed in this paper, we proved that L(2,1)-labeling number of the product graph on two fans is?λ(G) ≤ Δ+3 , L(2,1)-labeling number of the...L(2,1)-labeling number of the product and the join graph on two fans are discussed in this paper, we proved that L(2,1)-labeling number of the product graph on two fans is?λ(G) ≤ Δ+3 , L(2,1)-labeling number of the join graph on two fans is?λ(G) ≤ 2Δ+3.展开更多
The quantum search on the graph is a very important topic.In this work,we develop a theoretic method on searching of single vertex on the graph[Phys.Rev.Lett.114110503(2015)],and systematically study the search of man...The quantum search on the graph is a very important topic.In this work,we develop a theoretic method on searching of single vertex on the graph[Phys.Rev.Lett.114110503(2015)],and systematically study the search of many vertices on one low-connectivity graph,the joined complete graph.Our results reveal that,with the optimal jumping rate obtained from the theoretical method,we can find such target vertices at the time O(√N),where N is the number of total vertices.Therefore,the search of many vertices on the joined complete graph possessing quantum advantage has been achieved.展开更多
A proper total-coloring of graph G is said to be?equitable if the number of elements (vertices and edges) in any?two color classes differ by at most one, which the required?minimum number of colors is called the equit...A proper total-coloring of graph G is said to be?equitable if the number of elements (vertices and edges) in any?two color classes differ by at most one, which the required?minimum number of colors is called the equitable total chromatic?number. In this paper, we prove some theorems on equitable?total coloring and derive the equitable total chromatic numbers?of Pm V?Sn, Pm V?Fn and Pm V Wn.展开更多
Graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. To accelerate the simila...Graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop-tree based indexing method. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time.展开更多
The total chromatic number XT(G) of graph G is the least number of colorsassigned to VE(G) such that no adjacent or incident elements receive the same color.Gived graphs G1,G2, the join of G1 and G2, denoted by G1∨G2...The total chromatic number XT(G) of graph G is the least number of colorsassigned to VE(G) such that no adjacent or incident elements receive the same color.Gived graphs G1,G2, the join of G1 and G2, denoted by G1∨G2, is a graph G, V(G) =V(GI)∪V(G2) and E(G) = E(G1)∪E(G2) ∪{uv | u∈(G1), v ∈ V(G2)}. In this paper, it's proved that if v(G) = v(H), both Gc and Hc contain perfect matching and one of the followings holds: (i)Δ(G) =Δ(H) and there exist edge e∈ E(G), e' E E(H)such that both G-e and H-e' are of Class l; (ii)Δ(G)<Δ(H) and there exixst an edge e ∈E(H) such that H-e is of Class 1, then, the total coloring conjecture is true for graph G ∨H.展开更多
By the distance or degree of vertices of the molecular graph, we can define graph invariant called topological indices. Which are used in chemical graph to describe the structures and predicting some physicochemical p...By the distance or degree of vertices of the molecular graph, we can define graph invariant called topological indices. Which are used in chemical graph to describe the structures and predicting some physicochemical properties of chemical compound? In this paper, by introducing two new topological indices under the name first and second Zagreb locating indices of a graph G, we establish the exact values of those indices for some standard families of graphs included the firefly graph.展开更多
The total chromatic number xT(G) of a graph G is the minimum number of colors needed to color the elements(vertices and edges) of G such that no adjacent or incident pair of elements receive the same color, G is c...The total chromatic number xT(G) of a graph G is the minimum number of colors needed to color the elements(vertices and edges) of G such that no adjacent or incident pair of elements receive the same color, G is called Type 1 if xT(G) =△(G)+1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.展开更多
In this paper we prove that the join of two path graphs, two cycle graphs, Ladder graph and the tensor product are H2-cordial labeling. Further we prove that the join of two wheel graphs Wn and Wm, (mod 4) admits a H-...In this paper we prove that the join of two path graphs, two cycle graphs, Ladder graph and the tensor product are H2-cordial labeling. Further we prove that the join of two wheel graphs Wn and Wm, (mod 4) admits a H-cordial labeling.展开更多
A digraph is a graph in which each edge has an orientation. A linear directed path, , is a path whose all edges have the same orientation. A linear simple graph is called directed cordial if it admits 0 - 1 labeling t...A digraph is a graph in which each edge has an orientation. A linear directed path, , is a path whose all edges have the same orientation. A linear simple graph is called directed cordial if it admits 0 - 1 labeling that satisfies certain condition. In this paper, we study the cordiality of directed paths??and their second power . Similar studies are done for ?and the join ?. We show that ,? and ?are directed cordial. Sufficient conditions are given to the join?? to be directed cordial.展开更多
基金Supported by the NNSF of China(10771091)Supported by the Qinglan Project of Lianyungang Teacher’s College(2009QLD3)
文摘Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.
文摘L(2,1)-labeling number of the product and the join graph on two fans are discussed in this paper, we proved that L(2,1)-labeling number of the product graph on two fans is?λ(G) ≤ Δ+3 , L(2,1)-labeling number of the join graph on two fans is?λ(G) ≤ 2Δ+3.
基金the National Key R&D Program of China(Grant No.2017YFA0303800)the National Natural Science Foundation of China(Grant Nos.91850205 and 11974046)。
文摘The quantum search on the graph is a very important topic.In this work,we develop a theoretic method on searching of single vertex on the graph[Phys.Rev.Lett.114110503(2015)],and systematically study the search of many vertices on one low-connectivity graph,the joined complete graph.Our results reveal that,with the optimal jumping rate obtained from the theoretical method,we can find such target vertices at the time O(√N),where N is the number of total vertices.Therefore,the search of many vertices on the joined complete graph possessing quantum advantage has been achieved.
文摘A proper total-coloring of graph G is said to be?equitable if the number of elements (vertices and edges) in any?two color classes differ by at most one, which the required?minimum number of colors is called the equitable total chromatic?number. In this paper, we prove some theorems on equitable?total coloring and derive the equitable total chromatic numbers?of Pm V?Sn, Pm V?Fn and Pm V Wn.
文摘Graph similarity join has become imperative for integrating noisy and inconsistent data from multiple data sources. The edit distance is commonly used to measure the similarity between graphs. To accelerate the similarity join based on graph edit distance, in the paper, we make use of a preprocessing strategy to remove the mismatching graph pairs with significant differences. Then a novel method of building indexes for each graph is proposed by grouping the nodes which can be reached in k hops for each key node with structure conservation, which is the k-hop-tree based indexing method. Experiments on real and synthetic graph databases also confirm that our method can achieve good join quality in graph similarity join. Besides, the join process can be finished in polynomial time.
文摘The total chromatic number XT(G) of graph G is the least number of colorsassigned to VE(G) such that no adjacent or incident elements receive the same color.Gived graphs G1,G2, the join of G1 and G2, denoted by G1∨G2, is a graph G, V(G) =V(GI)∪V(G2) and E(G) = E(G1)∪E(G2) ∪{uv | u∈(G1), v ∈ V(G2)}. In this paper, it's proved that if v(G) = v(H), both Gc and Hc contain perfect matching and one of the followings holds: (i)Δ(G) =Δ(H) and there exist edge e∈ E(G), e' E E(H)such that both G-e and H-e' are of Class l; (ii)Δ(G)<Δ(H) and there exixst an edge e ∈E(H) such that H-e is of Class 1, then, the total coloring conjecture is true for graph G ∨H.
文摘By the distance or degree of vertices of the molecular graph, we can define graph invariant called topological indices. Which are used in chemical graph to describe the structures and predicting some physicochemical properties of chemical compound? In this paper, by introducing two new topological indices under the name first and second Zagreb locating indices of a graph G, we establish the exact values of those indices for some standard families of graphs included the firefly graph.
文摘The total chromatic number xT(G) of a graph G is the minimum number of colors needed to color the elements(vertices and edges) of G such that no adjacent or incident pair of elements receive the same color, G is called Type 1 if xT(G) =△(G)+1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.
文摘In this paper we prove that the join of two path graphs, two cycle graphs, Ladder graph and the tensor product are H2-cordial labeling. Further we prove that the join of two wheel graphs Wn and Wm, (mod 4) admits a H-cordial labeling.
文摘A digraph is a graph in which each edge has an orientation. A linear directed path, , is a path whose all edges have the same orientation. A linear simple graph is called directed cordial if it admits 0 - 1 labeling that satisfies certain condition. In this paper, we study the cordiality of directed paths??and their second power . Similar studies are done for ?and the join ?. We show that ,? and ?are directed cordial. Sufficient conditions are given to the join?? to be directed cordial.