Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also...Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also contains suberin,which plays a major role in protecting the tree from environmental conditions.Suberin is a natural aliphatic-aromatic cross-linked polyester present in the cell walls of both normal and damaged external tissues,the main component of which are long-chain aliphatic acids.Its main role as a plant ingredient is to protect against microbiological factors and water loss.One of the most important suberin monomers are suberin fatty acids,known for their hydrophobic and barrier properties.Therefore,due to the diverse chemical composition of suberin,it is an attractive alternative to hydrocarbon-based materials.Although its potential is recognized,it is not widely used in biocomposites technology,including wood-based composites and the polymer industry.The article will discuss the current knowledge about the potential of suberin and its components in biocomposites technology,which will include surface finishes,composite adhesives and polymer blends.展开更多
Exploration of novel genetic resources against root-knot nematode(RKN)is necessary to strengthen the resistance breeding program in cultivated rice,and investigations on the role of genotype-specific root anatomy in c...Exploration of novel genetic resources against root-knot nematode(RKN)is necessary to strengthen the resistance breeding program in cultivated rice,and investigations on the role of genotype-specific root anatomy in conferring a structural barrier against nematode invasion are largely underexplored.Here,we reported a highly-resistant rice germplasm Phule Radha that conferred remarkably lower RKN parasitic fitness in terms of reduced penetration and delayed development and reproduction when compared with susceptible cultivar PB1121.Using histological and biochemical analyses,we demonstrated that an enhanced suberin deposition in the exodermal root tip tissue of Phule Radha compared to PB1121 can effectively form a penetrative barrier against RKN infection,and this preformed barrier in the control tissue did not necessarily alter to a greater extent when challenged with RKN stress.Using qRT-PCR analysis,we showed that a number of suberin biosynthesis genes were greatly expressed in the exodermis of Phule Radha compared to PB1121.In sum,the present study established the role of rice exodermal barrier system in defense against an important soil-borne pathogen.展开更多
The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental pro...The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental process could be divided into 4 stages. In stage 1, the cell wall consisted only of a primary (the outmost) cellulose layer, which might further be divided into two substages, the oil cell initial, and the vacuolizing oil cell. During this stage, there were some small electron translucent vesicles and dark osmiophilic droplets of variant sizes in the different-shaped plastids. It was observed that some dark and gray osmiophilic materials coalesced to vacuoles in the cytoplasm. In stage 2, a lamellated suberin layer accumulated inside the primary cellulose layer. In stage 3, a thicker and looser inner cellulose wall layer was formed gradually inside the suberin layer. Some dark osmiophilic droplets have been observed in this loose inner cellulose wall layer. The plasmodesmata were blocked up and became a special structure. Then, the big vacuole, which is the oil sac, was full of osmiophilic oil. In stage 4, the oil cell became matured and the cytoplasm disintegrated. The oil sac enveloped from plasmalemma was attached to the cupule, which was formed by the protuberance of the inner cellulose wall layer into the lumen. After the maturity of oil cell, the ground cytoplasm began to disintegrate and became electron opaque or exhibited in a disordered state, and the osmiophilic oil appeared light gray.展开更多
基金funded under the ERANET Cofund Forest Value Program through Vinnova(Sweden)Valsts izglītības attīstības aģentūra(Latvia)+2 种基金Ministry of Education,Science and Sport(JIA)(Slovenia)Academy of Finland,The Research Council of Norway,and the National Science Centre,Poland(Agreement No.2021/03/Y/NZ9/00038)The Forest Value Program received funding from the Horizon 2020 Research and Innovation Program of the European Union under Grant Agreement No.773324.
文摘Bark extracts are sustainable sources of biopolymers and hold great promise for replacing fossil fuel-based polymers,for example,in wood-based composites.In addition to primary and secondary metabolites,tree bark also contains suberin,which plays a major role in protecting the tree from environmental conditions.Suberin is a natural aliphatic-aromatic cross-linked polyester present in the cell walls of both normal and damaged external tissues,the main component of which are long-chain aliphatic acids.Its main role as a plant ingredient is to protect against microbiological factors and water loss.One of the most important suberin monomers are suberin fatty acids,known for their hydrophobic and barrier properties.Therefore,due to the diverse chemical composition of suberin,it is an attractive alternative to hydrocarbon-based materials.Although its potential is recognized,it is not widely used in biocomposites technology,including wood-based composites and the polymer industry.The article will discuss the current knowledge about the potential of suberin and its components in biocomposites technology,which will include surface finishes,composite adhesives and polymer blends.
基金supported by the grant from the Department of Biotechnology,Ministry of Science and Technology,India(Grant No.BT/PR18924/COE/34/48/2017).
文摘Exploration of novel genetic resources against root-knot nematode(RKN)is necessary to strengthen the resistance breeding program in cultivated rice,and investigations on the role of genotype-specific root anatomy in conferring a structural barrier against nematode invasion are largely underexplored.Here,we reported a highly-resistant rice germplasm Phule Radha that conferred remarkably lower RKN parasitic fitness in terms of reduced penetration and delayed development and reproduction when compared with susceptible cultivar PB1121.Using histological and biochemical analyses,we demonstrated that an enhanced suberin deposition in the exodermal root tip tissue of Phule Radha compared to PB1121 can effectively form a penetrative barrier against RKN infection,and this preformed barrier in the control tissue did not necessarily alter to a greater extent when challenged with RKN stress.Using qRT-PCR analysis,we showed that a number of suberin biosynthesis genes were greatly expressed in the exodermis of Phule Radha compared to PB1121.In sum,the present study established the role of rice exodermal barrier system in defense against an important soil-borne pathogen.
文摘The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental process could be divided into 4 stages. In stage 1, the cell wall consisted only of a primary (the outmost) cellulose layer, which might further be divided into two substages, the oil cell initial, and the vacuolizing oil cell. During this stage, there were some small electron translucent vesicles and dark osmiophilic droplets of variant sizes in the different-shaped plastids. It was observed that some dark and gray osmiophilic materials coalesced to vacuoles in the cytoplasm. In stage 2, a lamellated suberin layer accumulated inside the primary cellulose layer. In stage 3, a thicker and looser inner cellulose wall layer was formed gradually inside the suberin layer. Some dark osmiophilic droplets have been observed in this loose inner cellulose wall layer. The plasmodesmata were blocked up and became a special structure. Then, the big vacuole, which is the oil sac, was full of osmiophilic oil. In stage 4, the oil cell became matured and the cytoplasm disintegrated. The oil sac enveloped from plasmalemma was attached to the cupule, which was formed by the protuberance of the inner cellulose wall layer into the lumen. After the maturity of oil cell, the ground cytoplasm began to disintegrate and became electron opaque or exhibited in a disordered state, and the osmiophilic oil appeared light gray.