In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient ext...In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.展开更多
Many approaches inquiring into variational inequality problems have been put forward,among which subgradient extragradient method is of great significance.A novel algorithm is presented in this article for resolving q...Many approaches inquiring into variational inequality problems have been put forward,among which subgradient extragradient method is of great significance.A novel algorithm is presented in this article for resolving quasi-nonexpansive fixed point problem and pseudomonotone variational inequality problem in a real Hilbert interspace.In order to decrease the execution time and quicken the velocity of convergence,the proposed algorithm adopts an inertial technology.Moreover,the algorithm is by virtue of a non-monotonic step size rule to acquire strong convergence theorem without estimating the value of Lipschitz constant.Finally,numerical results on some problems authenticate that the algorithm has preferable efficiency than other algorithms.展开更多
Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to e...Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.展开更多
Many approaches have been put forward to resolve the variational inequality problem. The subgradient extragradient method is one of the most effective. This paper proposes a modified subgradient extragradient method a...Many approaches have been put forward to resolve the variational inequality problem. The subgradient extragradient method is one of the most effective. This paper proposes a modified subgradient extragradient method about classical variational inequality in a real Hilbert interspace. By analyzing the operator’s partial message, the proposed method designs a non-monotonic step length strategy which requires no line search and is independent of the value of Lipschitz constant, and is extended to solve the problem of pseudomonotone variational inequality. Meanwhile, the method requires merely one map value and a projective transformation to the practicable set at every iteration. In addition, without knowing the Lipschitz constant for interrelated mapping, weak convergence is given and R-linear convergence rate is established concerning algorithm. Several numerical results further illustrate that the method is superior to other algorithms.展开更多
基金funded by the University of Science,Vietnam National University,Hanoi under project number TN.21.01。
文摘In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.
文摘Many approaches inquiring into variational inequality problems have been put forward,among which subgradient extragradient method is of great significance.A novel algorithm is presented in this article for resolving quasi-nonexpansive fixed point problem and pseudomonotone variational inequality problem in a real Hilbert interspace.In order to decrease the execution time and quicken the velocity of convergence,the proposed algorithm adopts an inertial technology.Moreover,the algorithm is by virtue of a non-monotonic step size rule to acquire strong convergence theorem without estimating the value of Lipschitz constant.Finally,numerical results on some problems authenticate that the algorithm has preferable efficiency than other algorithms.
文摘Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.
文摘Many approaches have been put forward to resolve the variational inequality problem. The subgradient extragradient method is one of the most effective. This paper proposes a modified subgradient extragradient method about classical variational inequality in a real Hilbert interspace. By analyzing the operator’s partial message, the proposed method designs a non-monotonic step length strategy which requires no line search and is independent of the value of Lipschitz constant, and is extended to solve the problem of pseudomonotone variational inequality. Meanwhile, the method requires merely one map value and a projective transformation to the practicable set at every iteration. In addition, without knowing the Lipschitz constant for interrelated mapping, weak convergence is given and R-linear convergence rate is established concerning algorithm. Several numerical results further illustrate that the method is superior to other algorithms.