The spontaneous magnetization of the Ho^3+ ion in holmium iron garnet (HoIG) single crystals in the temperature range of 4.2-294K along the directions [111], [110], and [100] are calculated, taking into account the...The spontaneous magnetization of the Ho^3+ ion in holmium iron garnet (HoIG) single crystals in the temperature range of 4.2-294K along the directions [111], [110], and [100] are calculated, taking into account the effects of six magnetically inequivalent sites occupied by the Ho^3+ ions based on the quantum theory. The calculated results show that the magnetization of the Ho^3+ ion in HoIG is obviously anisotropic. The theoretical results ave in agreement with those of experiments. A primary interpretation of the anisotropy of magnetization of the Ho^3+ ion in HoIG is put forward.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 0611054000)
文摘The spontaneous magnetization of the Ho^3+ ion in holmium iron garnet (HoIG) single crystals in the temperature range of 4.2-294K along the directions [111], [110], and [100] are calculated, taking into account the effects of six magnetically inequivalent sites occupied by the Ho^3+ ions based on the quantum theory. The calculated results show that the magnetization of the Ho^3+ ion in HoIG is obviously anisotropic. The theoretical results ave in agreement with those of experiments. A primary interpretation of the anisotropy of magnetization of the Ho^3+ ion in HoIG is put forward.