In this paper, we discuss the problem concerning global and local structure of solutions of an operator equation posed by M. S. Berger. Let f : U (?)E→ F be a C1 map, where E and F are Banach spaces and U is open in ...In this paper, we discuss the problem concerning global and local structure of solutions of an operator equation posed by M. S. Berger. Let f : U (?)E→ F be a C1 map, where E and F are Banach spaces and U is open in E. We show that the solution set of the equation f(x)=y for a fixed generalized regular value y of f is represented as a union of disjoint connected C1 Banach submanifolds of U, each of which has a dimension and its tangent space is given. In particular, a characterization of the isolated solutions of the equation f(x) = y is obtained.展开更多
基金Foundation item: The NSF (10271053) of China and the Doctoral Programme Foundation of Ministry of Education of China.
文摘In this paper, we discuss the problem concerning global and local structure of solutions of an operator equation posed by M. S. Berger. Let f : U (?)E→ F be a C1 map, where E and F are Banach spaces and U is open in E. We show that the solution set of the equation f(x)=y for a fixed generalized regular value y of f is represented as a union of disjoint connected C1 Banach submanifolds of U, each of which has a dimension and its tangent space is given. In particular, a characterization of the isolated solutions of the equation f(x) = y is obtained.