期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Development of Cubic Bezier Curve and Curve-Plane Intersection Method for Parametric Submarine Hull Form Design to Optimize Hull Resistance Using CFD
1
作者 Deddy Chrismianto Ahmad Fauzan Zakki +1 位作者 Berlian Arswendo Dong Joon Kim 《Journal of Marine Science and Application》 CSCD 2015年第4期399-405,共7页
Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create... Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio (L/H). Application program interface (API) scripting is also used to write code in the ANSYS DesignModeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient (Ct). The minimum C, was obtained. The calculated difference in (7, values between the initial submarine and the optimum submarine is around 0.26%, with the C, of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius (rn) and higher L/H than those of the initial submarine shape, while the radius of the tail (r1) is smaller than that of the initial shape. 展开更多
关键词 submarine hull form parametric design cubic Bezier curve curve-plane intersection method hull resistance coefficeint parametric design goal-driven optimization (GDO) computational fluid dynamic (CFD) ANSYS
下载PDF
A Havelock Source Panel Method for Near-surface Submarines 被引量:3
2
作者 Tim Gourlay Edward Dawson 《Journal of Marine Science and Application》 CSCD 2015年第3期215-224,共10页
A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the ... A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the method include pressure field, pressure drag, wave resistance, vertical force, trim moment and wave pattern. Comparisons are made with model tests for wave resistance of Series 58 and DARPA SUBOFF hulls, as well as with wave resistance, lift force and trim moment of three length-to-diameter variants of the DSTO Joubert submarine hull. It is found that the Havelock source panel method is capable of determining with reasonable accuracy wave resistance, vertical force and trim moment for submarine hulls. Further experimental data are required in order to assess the accuracy of the method for pressure field and wave pattern prediction. The method is implemented in the computer code“HullWave”and offers potential advantages over RANS-CFD codes in terms of speed, simplicity and robustness. 展开更多
关键词 near-surface submarine Havelock source panel method submarine hull wave resistance
下载PDF
Evaluation of the Residual Capacity of a Submarine for Different Limit States with Various Initial Imperfection Models 被引量:1
3
作者 Tatiana Pais Marco Gaiotti Beatrice Barsotti 《Journal of Marine Science and Application》 CSCD 2022年第2期59-68,共10页
The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the d... The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the design pressure,material yielding of the shell plating should occur first,eventually followed by local buckling,while global buckling currently retains the highest safety factor.On the other hand,in the aeronautical field,in some cases structural components are designed in such a way that local instability may occur within the design loads,being the phenomena inside the material elastic range and not leading to a significant drop in term of stiffness.This paper is aimed at investigating the structural response beyond a set of selected limit states,using nonlinear FE method adopting different initial imperfection models,to provide the designers with new information useful for calibrating safety factors.It was found that both local and global buckling can be considered as ultimate limit states,with a significant sensitivity towards initial imperfection,while material yielding and tripping buckling of frames show a residual structural capacity.In conclusion,it was found that the occurrence of local buckling leads to similar sudden catastrophic consequences as global buckling,with the ultimate strength capacity highly affected by the initial imperfection shape and amplitude. 展开更多
关键词 BUCKLING submarine hull Limit state design Structural response Imperfection model Residual capacity Ultimate strength
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部