The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical...The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect.展开更多
Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to ...Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.展开更多
Characters of head of low head pump station and the pump shaft power areanalyzed. Influence of each single factor on pump shaft power is expressed as change of specificshaft power. (non-dimensional) and the probabilit...Characters of head of low head pump station and the pump shaft power areanalyzed. Influence of each single factor on pump shaft power is expressed as change of specificshaft power. (non-dimensional) and the probability density function is determined. Influences ofmultiple factors on pump shaft power are analyzed. Method of calculating none over-loadedprobability of motor by integration by successive reductions is put forward and then relationbetween power spare coefficient and none over-loaded reliability of electric motor is established.Influences of all factors on pump shaft power being considered completely; power spare coefficientsof motor are calculated in three kinds of heads (changing and unchanging), two kinds of dirty-outconditions. Electrical motor power spare coefficients should be chosen as 1.20 approx 1.44, 1.11approx 1.19, 1.09 approx.14 respectively when pump heads are 4, 7, 9.5 m. The results mean much toreasonable choose of electrical motors in large pump stations, increasing reliability of pump unitsand saving equipment investment.展开更多
External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on ...External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism.展开更多
Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping unit...Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping units have many intrinsic disadvantages such as low efficiency, complex transmission devices, poor flexibility, tremendous volume and weight in long stroke, etc.Therefore, a novel direct driven linear electromagnetic pumping unit (EMPU) has been developed by combining oil extraction technology with linear motor technology. The thrust of EMPU matches the changing of suspension center load to improve the system efficiency and cut down the consumption of energy. Based on previous experience, a small-scale prototype was developed and a simulation was conducted with it. Both theoretical analyses and experimental study showed that the problems exiting in beam pumping units can be solved with EMPU system, and this is a new method which can be used to solve high energy waste in oil fields.展开更多
Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fa...Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.展开更多
The main purpose of this paper is to design and model a water-pumping system using a submersible multi-stage centrifugal pump driven by a three-phase induction motor. The system is intended for pumping water to the su...The main purpose of this paper is to design and model a water-pumping system using a submersible multi-stage centrifugal pump driven by a three-phase induction motor. The system is intended for pumping water to the surface from a deep well using three power supply systems: a general network, a photo-voltaic (PV) system, and a PV system with a battery bank. These systems are used to compare two three-phase induction motors—namely, a motor with a drive and another one without a drive. The systems dynamic models are simulated in MATLAB/Simulink and the results compared with the manufacturer’s data for validation purposes. The simulation results generally show system dynamics and expected performance over a range of operation.展开更多
A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation bas...A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation based on observation. The optimal state feedback bases on LQ cost function. The disturbing compensation is realized through reconstructing the state of load torque. A series of simulation are performed, and the results show that the control performance is satisfactory and can be maintained under changes of load torque.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this p...The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.展开更多
Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. ...Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.展开更多
This paper presents the behaviours of three-phase induction motor driving centrifugal pump under various solar irradiation levels, where the motor speed and torque depend on the source voltage and frequency, while the...This paper presents the behaviours of three-phase induction motor driving centrifugal pump under various solar irradiation levels, where the motor speed and torque depend on the source voltage and frequency, while the water-flow rate depends on the motor speed, density, and static head according to affinity flow. Matlab/Simulink model is proposed for studying the behaviours of these machines with respect to water flow capacity, motor current, electro-magnetic torque, and motor efficiency. The proposed photovoltaic with maximum power point tracking model based on observation and perturbation (O&P) maximum power tracking model is applied. The output voltage is regulated throughout Buck-Boost converter with purpose maintaining the output voltage at predetermined values. Since Induction motors are widely used in pump systems, the electromagnetic torque, water-flow rate are studied for various source frequencies. Comparison analysis is conducted for both motors with respect to water flow-rate, heads elevation, and motor current. In addition to that, the proposed system presents Photovoltaic-Grid (PV-Grid) Integrated model, where the power shortage required for normally operation of the pump is drawn from the electrical grid.展开更多
Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize the...Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize their produced energy. Then, that converter is linked to a voltage source inverter (VSI) that converts DC power to AC power. Vector control is used to control the VSI fed three phase induction motor driving the water pump. The Affinity laws are used to change the pump characteristics by changing the pump speed, and consequently, the pump flow rate, head, and power will be varied. In this paper, the Affinity laws are adapted to achieve the pump hydraulic requirements while the power delivered to the pump motor remains unchanged by constructing new pump curves. A Matlab/Simulink model of the PV pumping system is observed over a wide range of weather and loading conditions.展开更多
In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measurin...In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measuring water level, and avoiding waste of water is an essential task for all stakeholders. Therefore, the aim of this paper is to design and implement a mobile phone-based remote control. This will be applied to control the operation of a submersible motor in a water tank. The water level in the tank is detected and the device remotely turns the motor pump on/off. The design process is accomplished by developing an android application that works on GSM technology to manage the filling of water tank. An AT89C51 microcontroller is used for the desired programming. At the transmitting end, sensor is used for level detection and GSM module is used to send the information to user. According to this information, user controls the on/off operation of the pump. A SIM card is required for its operation and it works on attention (AT) commands. After the design and implementation of the device, the test results showed that all features of the device worked properly, and the device functions exactly as expected. More significantly, the paper has shown that ultrasonic sensors can be used to determine the level of water in a water tank and a GSM module can be used to control a submersible pump. The design and implementation of this device can help to reduce waste of time and power. Ultimately, it avoids water wastage thereby ensuring availability, conservation, and sustainability of water supply.展开更多
At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order ...At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order to eliminate the fluctuations and reduce problems, taking start pump, connect pump test under pressure in the water injection station installed the rotor frequency control system Changqing oil field developed. During the experiment, by progressively increasing the pressure pump to verify start pump with pressure feasibility test, the result shows when the pressure in the 0-25MPa pressure start and connect pump can be realized, and forecast the maximum pressure of the current start of the station with pressure pump. Start pump with pressure achieve the elimination of pressure fluctuations, provide the prerequisites about realizeing stable water injection pressure, and ultimately realize oil field water injection station to be automatic water injection laid a foundation.展开更多
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial researc...Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51605322)Shanxi Provincial Natural Science Foundation of China(Grant No.201901D111054)+1 种基金International Cooperation Project of Shanxi Province(Grant No.2016-002)Key Laboratory of Fluid and Power Machinery,Ministry of Education(Grant No.GZKF-201815).
文摘The spherical valve plate/cylinder block pair has the advantages of strong overturning resistance and large bearing area.However,the configurations of the unloading and pre-boosting triangular grooves on the spherical valve plate are different from those in the planar valve plate,resulting in special cavitation phenomenon on the spherical port plate pair.In order to study cavitation characteristics of spherical port plate pair,a dynamic CFD model of the piston pump including turbulence model,cavitation model and fluid compressibility is established.A detailed UDF compilation scheme is provided for modelling of the micron-sized spherical oil film mesh,which makes up for the lack of research on the meshing of the spherical oil film.In this paper,using CFD simulation tools,from the perspectives of pressure field,velocity field and gas volume fraction change,a detailed analysis of the transient evolution of the submerged cavitation jet in a axial piston pump with spherical valve plate is carried out.The study indicates the movement direction of the cavitation cloud cluster through the cloud image and the velocity vector direction of the observation point.The sharp decrease of velocity and gas volume fraction indicates the collapse phenomenon of bubbles on the part wall surface.These discoveries verify the special erosion effect in case of the spherical valve plate/cylinder block pair.The submerged cavitation jet generated by the unloading triangular grooves distributed on the spherical valve plate not only cause denudation of the inner wall surface of the valve plate,but also cause strong impact and denudation on the lower surface of the cylinder body.Finally,the direction of the unloading triangular groove was modified to extend the distance between it and the wall surface which can effectively alleviate the erosion effect.
基金The Project Supported by Doctoral Programme Foundation of Institution of Higher Education
文摘Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.
文摘Characters of head of low head pump station and the pump shaft power areanalyzed. Influence of each single factor on pump shaft power is expressed as change of specificshaft power. (non-dimensional) and the probability density function is determined. Influences ofmultiple factors on pump shaft power are analyzed. Method of calculating none over-loadedprobability of motor by integration by successive reductions is put forward and then relationbetween power spare coefficient and none over-loaded reliability of electric motor is established.Influences of all factors on pump shaft power being considered completely; power spare coefficientsof motor are calculated in three kinds of heads (changing and unchanging), two kinds of dirty-outconditions. Electrical motor power spare coefficients should be chosen as 1.20 approx 1.44, 1.11approx 1.19, 1.09 approx.14 respectively when pump heads are 4, 7, 9.5 m. The results mean much toreasonable choose of electrical motors in large pump stations, increasing reliability of pump unitsand saving equipment investment.
基金Project(GXXT-2019-048)supported by the University Synergy Innovation Program of Anhui Province,ChinaProject(51575002)supported by the National Natural Science Foundation of ChinaProject(gxbj ZD11)supported by the Top-Notch Talent Program of University(Profession)in Anhui Province,China。
文摘External return mechanism is a mechanical structure applied to axial piston pumps.To study its lubrication characteristics,the Reynolds equation applied to an external return spherical hinge pair was deduced based on the vector equation of relative-motion velocity of the external return spherical hinge pair under the influence of external swash plate inclination and offset distance.The results show that the total friction,axial leakage flow,and maximum value of the maximum oil-film pressure increase with increasing pump-shaft speed and decrease with increasing offset distance in one working cycle when the external-swash-plate inclination is constant.However,the varying offset distance has little effect on the axial leakage flow.The maximum value of the maximum oil-film pressure decreases with increasing external-swash-plate inclination and the total leakage flow increases with increasing external-swash-plate inclination in one working cycle when the offset distance is constant.It can be seen that the abovementioned parameters are important factors that affect the lubrication characteristics of external return spherical hinge pairs.Therefore,the complex effects of different coupling parameters should be comprehensively considered in the design of the external return mechanism.
文摘Obtaining petroleum at the cost of electrical energy is a common problem in almost all oil fields, and it is mainly caused by low duty radio of induction motor used in beam pumping units. Traditional beam-pumping units have many intrinsic disadvantages such as low efficiency, complex transmission devices, poor flexibility, tremendous volume and weight in long stroke, etc.Therefore, a novel direct driven linear electromagnetic pumping unit (EMPU) has been developed by combining oil extraction technology with linear motor technology. The thrust of EMPU matches the changing of suspension center load to improve the system efficiency and cut down the consumption of energy. Based on previous experience, a small-scale prototype was developed and a simulation was conducted with it. Both theoretical analyses and experimental study showed that the problems exiting in beam pumping units can be solved with EMPU system, and this is a new method which can be used to solve high energy waste in oil fields.
文摘Large water pump motor,whose operation decides the reliability of the whole production line,plays a very important role.Therefore,its online condition monitoring can help companies better know its operation,process fault analysis and protection.The essay mainly studies and designs large water pump motor′s real time vibration monitoring and fault diagnosis system.The essay completes the systems project design,the establishment of the system and performance test.Eddy-currentsensor,XM-120 vibration module,XM-320 axial translation module,XM-362 temperature module,XM-360 process amount module and XM-500 gateway module are used to measure the axial vibration and displacement of main motors.Laboratory tests prove that the system can meet the requirements of motor vibration monitoring.
文摘The main purpose of this paper is to design and model a water-pumping system using a submersible multi-stage centrifugal pump driven by a three-phase induction motor. The system is intended for pumping water to the surface from a deep well using three power supply systems: a general network, a photo-voltaic (PV) system, and a PV system with a battery bank. These systems are used to compare two three-phase induction motors—namely, a motor with a drive and another one without a drive. The systems dynamic models are simulated in MATLAB/Simulink and the results compared with the manufacturer’s data for validation purposes. The simulation results generally show system dynamics and expected performance over a range of operation.
文摘A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation based on observation. The optimal state feedback bases on LQ cost function. The disturbing compensation is realized through reconstructing the state of load torque. A series of simulation are performed, and the results show that the control performance is satisfactory and can be maintained under changes of load torque.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
文摘The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.
基金Supported by the PetroChina Science and Technology Project(2016B-4104)
文摘Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.
文摘This paper presents the behaviours of three-phase induction motor driving centrifugal pump under various solar irradiation levels, where the motor speed and torque depend on the source voltage and frequency, while the water-flow rate depends on the motor speed, density, and static head according to affinity flow. Matlab/Simulink model is proposed for studying the behaviours of these machines with respect to water flow capacity, motor current, electro-magnetic torque, and motor efficiency. The proposed photovoltaic with maximum power point tracking model based on observation and perturbation (O&P) maximum power tracking model is applied. The output voltage is regulated throughout Buck-Boost converter with purpose maintaining the output voltage at predetermined values. Since Induction motors are widely used in pump systems, the electromagnetic torque, water-flow rate are studied for various source frequencies. Comparison analysis is conducted for both motors with respect to water flow-rate, heads elevation, and motor current. In addition to that, the proposed system presents Photovoltaic-Grid (PV-Grid) Integrated model, where the power shortage required for normally operation of the pump is drawn from the electrical grid.
文摘Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize their produced energy. Then, that converter is linked to a voltage source inverter (VSI) that converts DC power to AC power. Vector control is used to control the VSI fed three phase induction motor driving the water pump. The Affinity laws are used to change the pump characteristics by changing the pump speed, and consequently, the pump flow rate, head, and power will be varied. In this paper, the Affinity laws are adapted to achieve the pump hydraulic requirements while the power delivered to the pump motor remains unchanged by constructing new pump curves. A Matlab/Simulink model of the PV pumping system is observed over a wide range of weather and loading conditions.
文摘In the last few decades, several monitoring systems integrated with water level detection have been the major research focus. Production boost and its sustainability depend mainly on sustainable water supply, measuring water level, and avoiding waste of water is an essential task for all stakeholders. Therefore, the aim of this paper is to design and implement a mobile phone-based remote control. This will be applied to control the operation of a submersible motor in a water tank. The water level in the tank is detected and the device remotely turns the motor pump on/off. The design process is accomplished by developing an android application that works on GSM technology to manage the filling of water tank. An AT89C51 microcontroller is used for the desired programming. At the transmitting end, sensor is used for level detection and GSM module is used to send the information to user. According to this information, user controls the on/off operation of the pump. A SIM card is required for its operation and it works on attention (AT) commands. After the design and implementation of the device, the test results showed that all features of the device worked properly, and the device functions exactly as expected. More significantly, the paper has shown that ultrasonic sensors can be used to determine the level of water in a water tank and a GSM module can be used to control a submersible pump. The design and implementation of this device can help to reduce waste of time and power. Ultimately, it avoids water wastage thereby ensuring availability, conservation, and sustainability of water supply.
文摘At present in the process of water injection station operation, starting and stopping the pump caused system pressure fluctuations, and the fluctuations caused many problems about downstream injection wells. In order to eliminate the fluctuations and reduce problems, taking start pump, connect pump test under pressure in the water injection station installed the rotor frequency control system Changqing oil field developed. During the experiment, by progressively increasing the pressure pump to verify start pump with pressure feasibility test, the result shows when the pressure in the 0-25MPa pressure start and connect pump can be realized, and forecast the maximum pressure of the current start of the station with pressure pump. Start pump with pressure achieve the elimination of pressure fluctuations, provide the prerequisites about realizeing stable water injection pressure, and ultimately realize oil field water injection station to be automatic water injection laid a foundation.
文摘Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. The pump-turbine unit is prepared for the power stabilization system, in this serial research, to provide the constant power with good quality for the grid system, even at the suddenly fluctuating/turbulent output from renewable energies. In the unit, the angular momentum changes through the front impeller/runner must be the same as that through the rear impeller/runner, that is, the axial flow at the outlet should be the same to the axial flow at the inlet. Such flow conditions are advantageous to work at not only the pumping mode but also the turbine mode. This work discusses experimentally the performance of the unit, and verifies that this type unit is very effective to both operating modes.