期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Triple three-dimensional MS/MS spectrum facilitates quantitative ginsenosides-targeted sub-metabolome characterization in notoginseng
1
作者 Ke Zhang Jinru Jia +5 位作者 Ting Li Wenjing Liu Pengfei Tu Jian-Bo Wan Jun Li Yuelin Song 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2024年第9期4045-4058,共14页
Although serving as the workhorse,MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization.Because more information intrinsically correlates to more structural and concent... Although serving as the workhorse,MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization.Because more information intrinsically correlates to more structural and concentration clues,here,efforts were devoted to comprehensively tracing and deciphering MS/MS behaviors through constructing triple three-dimensional(33D)-MS/MS spectrum.Ginsenosides-targeted metabolomics of notoginseng,one of the most famous edible medicinal plants,was employed as a proof-of-concept.Serial authentic ginsenosides were deployed to build the correlations between 33D-MS/MS spectra and structure/concentration features.Through assaying ginsenosides with progressive concentrations using QTOF-MS to configure 1st 3D spectrum,the generations of MS1 spectral signals,particularly multi-charged multimer anions,e.g.,[2Me2H]2e and[2Mt2HCOO]2e ions,relied on both concentration and the amount of sugar chains.By programming progressive collision energies to the front collision cell of Qtrap-MS device to gain 2nd 3D spectrum,optimal collision energy(OCE)corresponding to the glycosidic bond fission was primarily correlated with the masses of precursor and fragment ions and partially governed by the glycosidation site.The quantitative relationships between OCEs and masses of precursor and fragment ions were utilized to build large-scale quantitative program for ginsenosides.After applying progressive exciting energies to the back collision chamber to build 3rd 3D spectrum,the fragment ion and the decomposition product anion exhibited identical dissociation trajectories when they shared the same molecular geometry.After ginsenosides-focused quantitative metabolomics,significant differences occurred for sub-metabolome amongst different parts of notoginseng.The differential ginsenosides were confirmatively identified by applying the correlations between 33D-MS/MS spectra and structures.Together,33D-MS/MS spectrum covers all MS/MS behaviors and dramatically facilitates sub-metabolome characterization from both quantitative program development and structural identification. 展开更多
关键词 Quantitative submetabolome characterization GINSENOSIDES Structural identification Notoginseng Full exciting energy ramp-MS3 spectrum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部