期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation of hydro-sodalite from fly ash using a hydrothermal method with a submolten salt system and study of the phase transition process 被引量:3
1
作者 Yan-bing Zong Cheng-yu Zhao +2 位作者 Wen-hui Chen Zhao-bo Liu Da-qiang Cang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第1期55-62,共8页
Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hy... Hydro-sodalites are zeolitic materials with a wide variety of applications.Fly ash is an abundant industrial solid waste,rich in silicon and aluminum,from which hydro-sodalite can be synthesized.However,traditional hydrothermal synthesis methods are complex and cannot produce high-purity products.Therefore,there is a demand for processing routes to obtain high-purity hydro-sodalites.In the present study,high-purity hydro-sodalite(90.2 wt%)was prepared from fly ash by applying a hydrothermal method to a submolten salt system.Samples were characterized by powder X-ray diffraction(XRD),scanning electron microscopy(SEM),thermogravimetry and differential thermal analysis(TG–DTA),and Fourier transform infrared spectroscopy(FTIR)to confirm and quantify conversion of the raw material into the product phase.Purity of the samples prepared with an H2O/Na OH mass ratio of 1.5 and an H2O/fly ash mass ratio of 10 was calculated and the conversion process of the product phase was studied.Crystallinity of the product was influenced more by the Na OH concentration,less by the H2O/fly ash mass ratio.The main reaction process of the system is that the Si O ions produced by dissolution of the vitreous body in the fly ash and Na+ions in the solution reacted on the destroyed mullite skeleton to produce hydro-sodalite.This processing route could help mitigate processing difficulties,while producing high-purity hydro-sodalite from fly ash. 展开更多
关键词 fly ash submolten salt system hydrothermal method hydro-sodalite
下载PDF
Synthesis of NaY zeolite from a submolten depolymerized perlite:Alkalinity effect and crystallization kinetics
2
作者 Yanli Qu Peng Dong +4 位作者 Li Yang Yuanyuan Yue Haoliang Wang Jingcai Cheng Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期130-138,共9页
NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O... NaY zeolites are synthesized using submolten salt depolymerized natural perlite mineral as the main silica and alumina sources in a 0.94 L stirred crystallizer.Effects of alkalinity ranging from 0.38 to 0.55(n(Na_(2)O)/n(SiO_(2)))on the relative crystallinity,textural properties and crystallization kinetics were investigated.The results show that alkalinity exerts a nonmonotonic influence on the relative crystallinity and textural properties,which exhibit a maximum at the alkalinity of 0.43.The nucleation kinetics are studied by fitting the experimental data of relative crystallinity with the Gualtieri model.It is shown that the nucleation rate constant increases with increasing alkalinity,while the duration period of nucleation decreases with increasing alkalinity.For n(Na_(2)O)/n(SiO_(2))ratios ranging from 0.38 to 0.55,the as-synthesized NaY zeolites exhibit narrower crystal size distributions with the increase in alkalinity.The growth rates determined from the variations of average crystal size with time are 51.09,157.50,46.17 and 24.75 nm·h^(-1),respectively.It is found that the larger average crystal sizes at the alkalinity of 0.38 and 0.43 are attributed to the dominant role of crystal growth over nucleation.Furthermore,the combined action of prominent crystal growth and the longer duration periods of nucleation at the alkalinity of 0.38 and 0.43 results in broader crystal size distributions.The findings demonstrate that control of the properties of NaY zeolite and the crystallization kinetics can be achieved by conducting the crystallization process in an appropriate range of alkalinity of the reaction mixture. 展开更多
关键词 NaY zeolite submolten salt depolymerized perlite ALKALINITY Crystallization kinetics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部