This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the...This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.展开更多
Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most comm...Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency. However, several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements. As such, thoroughly examining the performance of these two different DIC methods seems to be highly necessary. Here, the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first. Subsequently, based on the same algorithmic details and parameters during analyses of numerical and real experiments, the performance of the different DIC approaches is fairly compared. Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element (subset) size is no less than 11 pixels.展开更多
文摘This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.
基金supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy(KF16162)
文摘Being the two primary approaches for full-field kinematics measurements, both subset-based local digital image correlation (DIC) and finite element-based global DIC have been extensively studied. Nowadays, most commercial DIC systems employ local DIC algorithm because of its advantages of straight forward principle and higher efficiency. However, several researchers argue that global DIC can provide better displacement results due to the displacement continuity constraint among adjacent elements. As such, thoroughly examining the performance of these two different DIC methods seems to be highly necessary. Here, the random errors associated with local DIC and two global DIC methods are theoretically analyzed at first. Subsequently, based on the same algorithmic details and parameters during analyses of numerical and real experiments, the performance of the different DIC approaches is fairly compared. Theoretical and experimental results reveal that local DIC outperforms its global counterpart in terms of both displacement results and computational efficiency when element (subset) size is no less than 11 pixels.