Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of predic...Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method.展开更多
Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a ...Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.展开更多
The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stre...The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.展开更多
The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve ...The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.展开更多
Temperature drop is commonly observed in subsea vertical X-mas trees during shutdown.The presence of a huge temperature difference between internal crude oil and external seawater can cause severe equipment degradatio...Temperature drop is commonly observed in subsea vertical X-mas trees during shutdown.The presence of a huge temperature difference between internal crude oil and external seawater can cause severe equipment degradation of the oil flow channel(e.g.,hydrate precipitation),which can block the oil flow channel and interrupt the production process.The most vulnerable parts of a subsea vertical X-mas tree tend to be components with high convective heat transfer rates,such as production modules and short joints.We proposed an innovative approach for the insulation design of underwater equipment under a shutdown condition.First,we obtained a heat transfer analysis of the tree under working conditions through computational fluid dynamics to ascertain the initial temperature condition for an unsteadystate analysis.Second,we investigated the unsteady heat transfer characteristics of the tree with an insulation layer in the shutdown state and derived the relationships between insulation duration and thickness by data analysis.We used data analysis to identify the relationship between insulation duration and thickness.Finally,we derived the empirical formula of insulation thickness for underwater equipment given the effect of environmental factors on the heat preservation effect.We performed the experiment with an oil pipeline,and the results showed that the internal oil of the equipment did not hydrate within 8 h under the shutdown condition with insulation layers.展开更多
A subsea wellhead equipped with obsolete vertical Christmas tree needs to be suspended for subsea tree recovery and subsequently to be permanently abandoned. Due to obsolete Christmas tree design combined with tubing ...A subsea wellhead equipped with obsolete vertical Christmas tree needs to be suspended for subsea tree recovery and subsequently to be permanently abandoned. Due to obsolete Christmas tree design combined with tubing inaccessibility issue,conventional subsea intervention method for setting downhole mechanical plug barriers with a semisubmersible rig or a riserless light well intervention vessel is not feasible to suspend the well. Attempt was made to suspend the well from a riserless light well intervention vessel by setting tubing mechanical plugs in 2017,but the mandrel of the tree running tool (TRT) was sheared off accidently while landing the TRT&subsea intervention lubricator (SIL) on the subsea tree. Due to resin’s superior mechanical and rheological properties,resin was evaluated as a well suspension material to create a suspension barrier. Resin plug was deployed successfully from a dive support vessel (DSV) across the perforations to allow the tree removal at cost effective manner. Resin plugging demonstrates a new approach at well P&A area.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFC3004802)the National Natural Science Foundation of China(Grant Nos.52171287,52325107)+3 种基金High Tech Ship Research Project of Ministry of Industry and Information Technology(Grant Nos.2023GXB01-05-004-03,GXBZH2022-293)the Science Foundation for Distinguished Young Scholars of Shandong Province(Grant No.ZR2022JQ25)the Taishan Scholars Project(Grant No.tsqn201909063)the sub project of the major special project of CNOOC Development Technology,“Research on the Integrated Technology of Intrinsic Safety of Offshore Oil Facilities”(Phase I),“Research on Dynamic Quantitative Analysis and Control Technology of Risks in Offshore Production Equipment”(Grant No.HFKJ-2D2X-AQ-2021-03)。
文摘Maintenance is an important technical measure to maintain and restore the performance status of equipment and ensure the safety of the production process in industrial production,and is an indispensable part of prediction and health management.However,most of the existing remaining useful life(RUL)prediction methods assume that there is no maintenance or only perfect maintenance during the whole life cycle;thus,the predicted RUL value of the system is obviously lower than its actual operating value.The complex environment of the system further increases the difficulty of maintenance,and its maintenance nodes and maintenance degree are limited by the construction period and working conditions,which increases the difficulty of RUL prediction.An RUL prediction method for a multi-omponent system based on the Wiener process considering maintenance is proposed.The performance degradation model of components is established by a dynamic Bayesian network as the initial model,which solves the uncertainty of insufficient data problems.Based on the experience of experts,the degree of degradation is divided according to Poisson process simulation random failure,and different maintenance strategies are used to estimate a variety of condition maintenance factors.An example of a subsea tree system is given to verify the effectiveness of the proposed method.
基金financially supported by the National Ministry of Industry and Information Technology Innovation Special Project-Engineering Demonstration Application of Subsea Production System,Topic 4:Research on Subsea X-Tree and Wellhead Offshore Testing Technology(Grant No.MC-201901-S01-04)the Key Research and Development Program of Shandong Province(Major Innovation Project)(Grant Nos.2022CXGC020405,2023CXGC010415)。
文摘Due to the high potential risk and many influencing factors of subsea horizontal X-tree installation,to guarantee the successful completion of sea trials of domestic subsea horizontal X-trees,this paper established a modular risk evaluation model based on a fuzzy fault tree.First,through the analysis of the main process oftree down and combining the Offshore&Onshore Reliability Data(OREDA)failure statistics and the operation procedure and the data provided by the job,the fault tree model of risk analysis of the tree down installation was established.Then,by introducing the natural language of expert comprehensive evaluation and combining fuzzy principles,quantitative analysis was carried out,and the fuzzy number was used to calculate the failure probability of a basic event and the occurrence probability of a top event.Finally,through a sensitivity analysis of basic events,the basic events of top events significantly affected were determined,and risk control and prevention measures for the corresponding high-risk factors were proposed for subsea horizontal X-tree down installation.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA09A205)
文摘The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.
基金supported by the National Natural Science Foundation of China under Grant No.61703224。
文摘The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.
基金financed by the Scientific Research Project of Ocean Engineering Equipment,Ministry of Industry and Information Technology of China。
文摘Temperature drop is commonly observed in subsea vertical X-mas trees during shutdown.The presence of a huge temperature difference between internal crude oil and external seawater can cause severe equipment degradation of the oil flow channel(e.g.,hydrate precipitation),which can block the oil flow channel and interrupt the production process.The most vulnerable parts of a subsea vertical X-mas tree tend to be components with high convective heat transfer rates,such as production modules and short joints.We proposed an innovative approach for the insulation design of underwater equipment under a shutdown condition.First,we obtained a heat transfer analysis of the tree under working conditions through computational fluid dynamics to ascertain the initial temperature condition for an unsteadystate analysis.Second,we investigated the unsteady heat transfer characteristics of the tree with an insulation layer in the shutdown state and derived the relationships between insulation duration and thickness by data analysis.We used data analysis to identify the relationship between insulation duration and thickness.Finally,we derived the empirical formula of insulation thickness for underwater equipment given the effect of environmental factors on the heat preservation effect.We performed the experiment with an oil pipeline,and the results showed that the internal oil of the equipment did not hydrate within 8 h under the shutdown condition with insulation layers.
文摘A subsea wellhead equipped with obsolete vertical Christmas tree needs to be suspended for subsea tree recovery and subsequently to be permanently abandoned. Due to obsolete Christmas tree design combined with tubing inaccessibility issue,conventional subsea intervention method for setting downhole mechanical plug barriers with a semisubmersible rig or a riserless light well intervention vessel is not feasible to suspend the well. Attempt was made to suspend the well from a riserless light well intervention vessel by setting tubing mechanical plugs in 2017,but the mandrel of the tree running tool (TRT) was sheared off accidently while landing the TRT&subsea intervention lubricator (SIL) on the subsea tree. Due to resin’s superior mechanical and rheological properties,resin was evaluated as a well suspension material to create a suspension barrier. Resin plug was deployed successfully from a dive support vessel (DSV) across the perforations to allow the tree removal at cost effective manner. Resin plugging demonstrates a new approach at well P&A area.