期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
27.3-day and 13.6-day Atmospheric Tide and Lunar Forcing on Atmospheric Circulation 被引量:7
1
作者 李国庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第3期359-374,共16页
An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from whi... An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin 展开更多
关键词 atmospheric tide subseasonal oscillation lunar influence atmospheric circulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部