An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from whi...An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin展开更多
The authors’previous study identified the wave trains of intraseasonal oscillations,which are mainly in the band of 10–30 days,over the North Pacific during summer.The wave trains are zonally oriented and trapped al...The authors’previous study identified the wave trains of intraseasonal oscillations,which are mainly in the band of 10–30 days,over the North Pacific during summer.The wave trains are zonally oriented and trapped along the upper-tropospheric westerly jet,and accordingly gain energy mainly through baroclinic energy conversion.In this study,the authors investigate the distinct features of the wave trains between early summer(1 June to 7 July)and late summer(8 July to 31 August),considering that the westerly jet experiences a remarkable subseasonal variation over the North Pacific during summer—that is,the jet is much stronger in early summer than late summer.The results indicate that the wave trains are stronger in early summer compared with late summer.Further analysis suggests that,in early summer,the wave trains can obtain energy more efficiently from the basic flow;or more exactly,stronger westerlies through baroclinic energy conversion.展开更多
文摘An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin
基金This work was supported by the National Natural Science Foundation of China[grant numbers 42130504 and 41721004].
文摘The authors’previous study identified the wave trains of intraseasonal oscillations,which are mainly in the band of 10–30 days,over the North Pacific during summer.The wave trains are zonally oriented and trapped along the upper-tropospheric westerly jet,and accordingly gain energy mainly through baroclinic energy conversion.In this study,the authors investigate the distinct features of the wave trains between early summer(1 June to 7 July)and late summer(8 July to 31 August),considering that the westerly jet experiences a remarkable subseasonal variation over the North Pacific during summer—that is,the jet is much stronger in early summer than late summer.The results indicate that the wave trains are stronger in early summer compared with late summer.Further analysis suggests that,in early summer,the wave trains can obtain energy more efficiently from the basic flow;or more exactly,stronger westerlies through baroclinic energy conversion.