期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION 被引量:2
1
作者 Long Fei He Jinsong Ye Xueyi Zhuang Zhenquan Li Bin 《Journal of Electronics(China)》 2006年第1期103-106,共4页
Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent A... Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available. 展开更多
关键词 Face recognition subspace analysis Feature extraction Discriminant Independent Component analysis (DICA).
下载PDF
ClustNails:Visual Analysis of Subspace Clusters 被引量:1
2
作者 Andrada Tatu Leishi Zhang +4 位作者 Enrico Bertini Tobias Schreck Daniel Keim Sebastian Bremm Tatiana von Landesbergert 《Tsinghua Science and Technology》 SCIE EI CAS 2012年第4期419-428,共10页
Subspace clustering addresses an important problem in clustering multi-dimensional data. In sparse multi-dimensional data, many dimensions are irrelevant and obscure the cluster boundaries. Subspace clustering helps b... Subspace clustering addresses an important problem in clustering multi-dimensional data. In sparse multi-dimensional data, many dimensions are irrelevant and obscure the cluster boundaries. Subspace clustering helps by mining the clusters present in only locally relevant subsets of dimensions. However, understanding the result of subspace clustering by analysts is not trivial. In addition to the grouping information, relevant sets of dimensions and overlaps between groups, both in terms of dimensions and records, need to be analyzed. We introduce a visual subspace cluster analysis system called ClustNails. It integrates several novel visualization techniques with various user interaction facilities to support navigating and interpreting the result of subspace clustering. We demonstrate the effectiveness of the proposed system by applying it to the analysis of real world data and comparing it with existing visual subspace cluster analysis systems. 展开更多
关键词 subspace cluster analysis VISUALIZATION data exploration pixel-based techniques
原文传递
Subspace transform induced robust similarity measure for facial images
3
作者 Jian ZHANG Heng ZHANG +3 位作者 Li-ling BO Hong-ran LI Shuai XU Dong-qing YUAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2020年第9期1334-1345,共12页
Similarity measure has long played a critical role and attracted great interest in various areas such as pattern recognition and machine perception.Nevertheless,there remains the issue of developing an efficient two-d... Similarity measure has long played a critical role and attracted great interest in various areas such as pattern recognition and machine perception.Nevertheless,there remains the issue of developing an efficient two-dimensional(2D)robust similarity measure method for images.Inspired by the properties of subspace,we develop an effective 2D image similarity measure technique,named transformation similarity measure(TSM),for robust face recognition.Specifically,the TSM method robustly determines the similarity between two well-aligned frontal facial images while weakening interference in the face recognition by linear transformation and singular value decomposition.We present the mathematical features and some odds to reveal the feasible and robust measure mechanism of TSM.The performance of the TSM method,combined with the nearest neighbor rule,is evaluated in face recognition under different challenges.Experimental results clearly show the advantages of the TSM method in terms of accuracy and robustness. 展开更多
关键词 subspace analysis Image similarity measure Face recognition Pattern recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部