A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, ...A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.展开更多
文摘A frame is an orthonormal basis-like collection of vectors in a Hilbert space, but need not be a basis or orthonormal. A fusion frame (frame of subspaces) is a frame-like collection of subspaces in a Hilbert space, thereby constructing a frame for the whole space by joining sequences of frames for subspaces. Moreover the notion of fusion frames provide a framework for applications and providing efficient and robust information processing algorithms.In this paper we study the conditions under which removing an element from a fusion frame, again we obtain another fusion frame. We give another proof of [5, Corollary 3.3(iii)] with extra information about the bounds.