期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CHARACTERIZATION OF DERIVATIONS ON B(X) BY LOCAL ACTIONS
1
作者 薛天娇 安润玲 侯晋川 《Acta Mathematica Scientia》 SCIE CSCD 2017年第3期668-678,共11页
Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B... Let A be a unital algebra and M be a unital .A-bimodule. A linear map δ : A →M is said to be Jordan derivable at a nontrivial idempotent P ∈A if δ(A) o B + A o δ(B) =δ(A o B) for any A,B ∈ .4 with A o B = P, here A o B = AB + BA is the usual Jordan product. In this article, we show that if ,A = AlgAN is a Hilbert space nest Mgebra and M = B(H), or A =M= B(X), then, a linear mapδ: A→M is Jordan derivable at a nontrivial projection P ∈ N or an arbitrary but fixed nontrivial idempotent P∈ B(X) if and only if it is a derivation. New equivalent characterization of derivations on these operator algebras was obtained. 展开更多
关键词 DERIVATIONS triangular algebras subspace lattice algebras Jordan derivable maps
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部