期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
DOA estimation of high-dimensional signals based on Krylov subspace and weighted l_(1)-norm
1
作者 YANG Zeqi LIU Yiheng +4 位作者 ZHANG Hua MA Shuai CHANG Kai LIU Ning LYU Xiaode 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期532-540,F0002,共10页
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc... With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment. 展开更多
关键词 direction of arrival(DOA) compressed sensing(CS) Krylov subspace l_(1)-norm dimensionality reduction
下载PDF
Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment 被引量:73
2
作者 张振跃 查宏远 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期406-424,共19页
We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold i... We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements. 展开更多
关键词 nonlinear dimensionality reduction principal manifold tangent space subspace alignment singular value decomposition.
下载PDF
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
3
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY NORMALIZATION subspace NPsim
下载PDF
Subspace Clustering in High-Dimensional Data Streams:A Systematic Literature Review
4
作者 Nur Laila Ab Ghani Izzatdin Abdul Aziz Said Jadid AbdulKadir 《Computers, Materials & Continua》 SCIE EI 2023年第5期4649-4668,共20页
Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approac... Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approach for processing high-dimensional data by finding relevant features for each cluster in the data space.Subspace clustering methods extend traditional clustering to account for the constraints imposed by data streams.Data streams are not only high-dimensional,but also unbounded and evolving.This necessitates the development of subspace clustering algorithms that can handle high dimensionality and adapt to the unique characteristics of data streams.Although many articles have contributed to the literature review on data stream clustering,there is currently no specific review on subspace clustering algorithms in high-dimensional data streams.Therefore,this article aims to systematically review the existing literature on subspace clustering of data streams in high-dimensional streaming environments.The review follows a systematic methodological approach and includes 18 articles for the final analysis.The analysis focused on two research questions related to the general clustering process and dealing with the unbounded and evolving characteristics of data streams.The main findings relate to six elements:clustering process,cluster search,subspace search,synopsis structure,cluster maintenance,and evaluation measures.Most algorithms use a two-phase clustering approach consisting of an initialization stage,a refinement stage,a cluster maintenance stage,and a final clustering stage.The density-based top-down subspace clustering approach is more widely used than the others because it is able to distinguish true clusters and outliers using projected microclusters.Most algorithms implicitly adapt to the evolving nature of the data stream by using a time fading function that is sensitive to outliers.Future work can focus on the clustering framework,parameter optimization,subspace search techniques,memory-efficient synopsis structures,explicit cluster change detection,and intrinsic performance metrics.This article can serve as a guide for researchers interested in high-dimensional subspace clustering methods for data streams. 展开更多
关键词 CLUSTERING subspace clustering projected clustering data stream stream clustering high dimensionality evolving data stream concept drift
下载PDF
Second-order nonlinear differential operators possessing invariant subspaces of submaximal dimension 被引量:6
5
作者 朱春蓉 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期42-49,共8页
The invariant subspace method is used to construct the explicit solution of a nonlinear evolution equation. The second-order nonlinear differential operators that possess invariant subspaces of submaximal dimension ar... The invariant subspace method is used to construct the explicit solution of a nonlinear evolution equation. The second-order nonlinear differential operators that possess invariant subspaces of submaximal dimension are described. There are second-order nonlinear differential operators, including cubic operators and quadratic operators, which preserve an invariant subspace of submaximal dimension. A full. description, of the second-order cubic operators with constant coefficients admitting a four-dimensional invariant subspace is given. It is shown that the maximal dimension of invaxiant subspaces preserved by a second-order cubic operator is four. Several examples are given for the construction of the exact solutions to nonlinear evolution equations with cubic nonlinearities. These solutions blow up in a finite 展开更多
关键词 nonlinear evolution equations cubic operators invariant subspace method submaximal dimension blow-up solution
下载PDF
INTERSECTIONS AND POLAR FUNCTIONS OF FRACTIONAL BROWNIAN SHEETS 被引量:4
6
作者 陈振龙 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期779-796,共18页
Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of contin... Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved. 展开更多
关键词 Fractional Brownian sheet polar function Hausdorff dimension intersection
下载PDF
Second-Order Krylov Subspace and Arnoldi Procedure 被引量:2
7
作者 柏兆俊 苏仰锋 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期378-390,共13页
We report our recent work on a second-order Krylov subspace and the corresponding second-order Arnoldi procedure for generating its orthonormal basis. The second-order Krylov subspace is spanned by a sequence of vecto... We report our recent work on a second-order Krylov subspace and the corresponding second-order Arnoldi procedure for generating its orthonormal basis. The second-order Krylov subspace is spanned by a sequence of vectors defined via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and an initial vector u. It generalizes the well-known Krylov subspace K n(A;v), which is spanned by a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single coefficient matrix A and an initial vector v. The applications are shown for the solution of quadratic eigenvalue problems and dimension reduction of second-order dynamical systems. The new approaches preserve essential structures and properties of the quadratic eigenvalue problem and second-order system, and demonstrate superior numerical results over the common approaches based on linearization of these second-order problems. 展开更多
关键词 second-order Krylov subspace second-order Arnoldi quadratic eigenvalue dimension reduction.
下载PDF
HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELDS 被引量:1
8
作者 Jun WANG Zhenlong CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2022年第2期653-670,共18页
Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which ... Let X^(H)={X^(H)(s),s∈R^(N_(1))}and X^(K)={X^(K)(t),t∈R^(N_(2))}be two independent time-space anisotropic random fields with indices H∈(0,1)^(N_(1)) and K∈(0,1)^(N_(2)),which may not possess Gaussianity,and which take values in R^(d) with a space metric τ.Under certain general conditions with density functions defined on a bounded interval,we study problems regarding the hitting probabilities of time-space anisotropic random fields and the existence of intersections of the sample paths of random fields X^(H) and X^(K).More generally,for any Borel set F⊂R^(d),the conditions required for F to contain intersection points of X^(H) and X^(K) are established.As an application,we give an example of an anisotropic non-Gaussian random field to show that these results are applicable to the solutions of non-linear systems of stochastic fractional heat equations. 展开更多
关键词 Hitting probability multiple intersection anisotropic random field capacity Hausdorff dimension stochastic fractional heat equations
下载PDF
CSFW-SC: Cuckoo Search Fuzzy-Weighting Algorithm for Subspace Clustering Applying to High-Dimensional Clustering 被引量:1
9
作者 WANG Jindong HE Jiajing +1 位作者 ZHANG Hengwei YU Zhiyong 《China Communications》 SCIE CSCD 2015年第S2期55-63,共9页
Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subsp... Aimed at the issue that traditional clustering methods are not appropriate to high-dimensional data, a cuckoo search fuzzy-weighting algorithm for subspace clustering is presented on the basis of the exited soft subspace clustering algorithm. In the proposed algorithm, a novel objective function is firstly designed by considering the fuzzy weighting within-cluster compactness and the between-cluster separation, and loosening the constraints of dimension weight matrix. Then gradual membership and improved Cuckoo search, a global search strategy, are introduced to optimize the objective function and search subspace clusters, giving novel learning rules for clustering. At last, the performance of the proposed algorithm on the clustering analysis of various low and high dimensional datasets is experimentally compared with that of several competitive subspace clustering algorithms. Experimental studies demonstrate that the proposed algorithm can obtain better performance than most of the existing soft subspace clustering algorithms. 展开更多
关键词 HIGH-DIMENSIONAL data CLUSTERING soft subspace CUCKOO SEARCH FUZZY CLUSTERING
下载PDF
Adaptive subspace detection based on two-step dimension reduction in the underwater waveguide
10
作者 孔德智 孙超 +1 位作者 李明杨 谢磊 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1414-1422,共9页
In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the ... In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the samplings of training data are deficient.This paper proposes a dimension-reduced approach to alleviate this problem.The dimension reduction includes two steps:firstly,the full array is divided into several subarrays;secondly,the test data and the training data at each subarray are transformed into the modal domain from the hydrophone domain.Then the modal-domain test data and training data at each subarray are processed to formulate the subarray statistic by using the GLRT theory.The final test statistic of the dimension-reduced ASD(DR-ASD)is obtained by summing all the subarray statistics.After the dimension reduction,the unknown parameters can be estimated more accurately so the DR-ASD achieves a better detection performance than the ASD.In order to achieve the optimal detection performance,the processing gain of the DR-ASD is deduced to choose a proper number of subarrays.Simulation experiments verify the improved detection performance of the DR-ASD compared with the ASD. 展开更多
关键词 Underwater waveguide Adaptive subspace detection Dimension reduction Processing gain
下载PDF
Random Subspace Learning Approach to High-Dimensional Outliers Detection 被引量:1
11
作者 Bohan Liu Ernest Fokoué 《Open Journal of Statistics》 2015年第6期618-630,共13页
We introduce and develop a novel approach to outlier detection based on adaptation of random subspace learning. Our proposed method handles both high-dimension low-sample size and traditional low-dimensional high-samp... We introduce and develop a novel approach to outlier detection based on adaptation of random subspace learning. Our proposed method handles both high-dimension low-sample size and traditional low-dimensional high-sample size datasets. Essentially, we avoid the computational bottleneck of techniques like Minimum Covariance Determinant (MCD) by computing the needed determinants and associated measures in much lower dimensional subspaces. Both theoretical and computational development of our approach reveal that it is computationally more efficient than the regularized methods in high-dimensional low-sample size, and often competes favorably with existing methods as far as the percentage of correct outlier detection are concerned. 展开更多
关键词 HIGH-DIMENSIONAL Robust OUTLIER DETECTION Contamination Large p Small n Random subspace Method Minimum COVARIANCE DETERMINANT
下载PDF
A Data Stream Subspace Clustering Algorithm
12
作者 Xiang Yu Xiandong Xu Liandong Lin 《国际计算机前沿大会会议论文集》 2015年第1期97-99,共3页
The main aim of data stream subspace clustering is to find clusters in subspace in rational time accurately. The existing data stream subspace clustering algorithms are greatly influenced by parameters. Due to the fla... The main aim of data stream subspace clustering is to find clusters in subspace in rational time accurately. The existing data stream subspace clustering algorithms are greatly influenced by parameters. Due to the flaws of traditional data stream subspace clustering algorithms, we propose SCRP, a new data stream subspace clustering algorithm. SCRP has the advantages of fast clustering and being insensitive to outliers. When data stream changes, the changes will be recorded by the data structure named Region-tree, and the corresponding statistics information will be updated. Further SCRP can regulate clustering results in time when data stream changes. According to the experiments on real datasets and synthetic datasets, SCRP is superior to the existing data stream subspace clustering algorithms on both clustering precision and clustering speed, and it has good scalability to the number of clusters and dimensions. 展开更多
关键词 DATA MINING DATA STREAM subspace clustering FEATURE selection DIMENSION reduction
下载PDF
L-Fuzzy Vector Subspaces and Its Fuzzy Dimension
13
作者 Chun’e Huang Yan Song Xiruo Wang 《Advances in Linear Algebra & Matrix Theory》 2016年第4期158-168,共11页
In this paper, we introduce the definition of L-fuzzy vector subspace, define its dimension by an L-fuzzy natural number. For a finite-dimensional L-fuzzy vector subspace, we prove that the equality holds without any ... In this paper, we introduce the definition of L-fuzzy vector subspace, define its dimension by an L-fuzzy natural number. For a finite-dimensional L-fuzzy vector subspace, we prove that the equality holds without any restricted conditions. At the same time, we deduce that the formula holds. 展开更多
关键词 L-Fuzzy Sets L-Fuzzy Vector subspace L-Fuzzy Dimension
下载PDF
Linear low-rank approximation and nonlinear dimensionality reduction 被引量:2
14
作者 ZHANG Zhenyue & ZHA Hongyuan Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou 310027, China Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A. 《Science China Mathematics》 SCIE 2004年第6期908-920,共13页
We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank appr... We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning. 展开更多
关键词 singular value decomposition low-rank approximation sparse matrix nonlinear dimensionality reduction principal manifold subspace alignment data mining
原文传递
On intersections of independent anisotropic Gaussian random fields 被引量:11
15
作者 CHEN ZhenLong XIAO YiMin 《Science China Mathematics》 SCIE 2012年第11期2217-2232,共16页
Let X^H = {X^H(8),8∈ R^N1} and XK = {X^K(t),t ∈R^2} be two independent anisotropic Gaussian random fields with values in R^d with indices H = (H1,... ,HN1) ∈ (0, 1)^N1, K = (K1,..., KN2)∈ (0, 1)^N2, r... Let X^H = {X^H(8),8∈ R^N1} and XK = {X^K(t),t ∈R^2} be two independent anisotropic Gaussian random fields with values in R^d with indices H = (H1,... ,HN1) ∈ (0, 1)^N1, K = (K1,..., KN2)∈ (0, 1)^N2, respectively. Existence of intersections of the sample paths of XH and XK is studied. More generally, let E1 R^N1, E2 R^N2 and F R^d be Borel sets. A necessary condition and a sufficient condition for P{(X^H(E1) ∩ X^K(E2)) ∩ F ≠ Ф} 〉 0 in terms of the Bessel-Riesz type capacity and Hausdorff measure of E1 x E2 x F in the metric space (R^N1+N2+d, ρ) are proved, whereρ is a metric defined in terms of H and K. These results are applicable to solutions of stochastic heat equations driven by space-time Gaussian noise and fractional Brownian sheets. 展开更多
关键词 intersection anisotropic Gaussian fields hitting probability Hausdorff dimension stochastic heatequation fractional Brownian sheet
原文传递
The t-wise intersection of relative two-weight codes
16
作者 LIU ZiHui 《Science China Mathematics》 SCIE 2014年第8期1765-1770,共6页
The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weigh... The t-wise intersection of constant-weight codes are computed.Based on the above result,the t-wise intersection of relative two-weight codes are determined by using the finite geometric structure of relative two-weight codes. 展开更多
关键词 relative two-weight code t-wise intersecting constant-weight code projective subspace value function
原文传递
Fast filtering false active subspaces for efficient high dimensional similarity processing
17
作者 WANG GuoRen YU Ge, XIN JunChang ZHAO YuHai ZHANG EnDe 《Science in China(Series F)》 2009年第2期286-294,共9页
The query space of a similarity query is usually narrowed down by pruning inactive query subspaces which contain no query results and keeping active query subspaces which may contain objects corre- sponding to the req... The query space of a similarity query is usually narrowed down by pruning inactive query subspaces which contain no query results and keeping active query subspaces which may contain objects corre- sponding to the request. However, some active query subspaces may contain no query results at all, those are called false active query subspaces. It is obvious that the performance of query processing degrades in the presence of false active query subspaces. Our experiments show that this problem becomes seriously when the data are high dimensional and the number of accesses to false active subspaces increases as the dimensionality increases. In order to solve this problem, this paper proposes a space mapping approach to reducing such unnecessary accesses. A given query space can be refined by filtering within its mapped space. To do so, a mapping strategy called maxgap is proposed to improve the efficiency of the refinement processing. Based on the mapping strategy, an index structure called MS-tree and algorithms of query processing are presented in this paper. Finally, the performance of MS-tree is compared with that of other competitors in terms of range queries on a real data set. 展开更多
关键词 high dimensional index refining processing false active subspace
原文传递
Dimension reduction graph-based sparse subspace clustering for intelligent fault identification of rolling element bearings
18
作者 Le Zhao Shaopu Yang Yongqiang Liu 《International Journal of Mechanical System Dynamics》 2021年第2期207-219,共13页
Sparse subspace clustering(SSC)is a spectral clustering methodology.Since high-dimensional data are often dispersed over the union of many low-dimensional subspaces,their representation in a suitable dictionary is spa... Sparse subspace clustering(SSC)is a spectral clustering methodology.Since high-dimensional data are often dispersed over the union of many low-dimensional subspaces,their representation in a suitable dictionary is sparse.Therefore,SSC is an effective technology for diagnosing mechanical system faults.Its main purpose is to create a representation model that can reveal the real subspace structure of high-dimensional data,construct a similarity matrix by using the sparse representation coefficients of high-dimensional data,and then cluster the obtained representation coefficients and similarity matrix in subspace.However,the design of SSC algorithm is based on global expression in which each data point is represented by all possible cluster data points.This leads to nonzero terms in nondiagonal blocks of similar matrices,which reduces the recognition performance of matrices.To improve the clustering ability of SSC for rolling bearing and the robustness of the algorithm in the presence of a large number of background noise,a simultaneous dimensionality reduction subspace clustering technology is provided in this work.Through the feature extraction of envelope signal,the dimension of the feature matrix is reduced by singular value decomposition,and the Euclidean distance between samples is replaced by correlation distance.A dimension reduction graph-based SSC technology is established.Simulation and bearing data of Western Reserve University show that the proposed algorithm can improve the accuracy and compactness of clustering. 展开更多
关键词 correlation distance dimension reduction sparse subspace clustering
原文传递
Subspace clustering through attribute clustering
19
作者 Kun NIU Shubo ZHANG Junliang CHEN 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2008年第1期44-48,共5页
Many recently proposed subspace clustering methods suffer from two severe problems.First,the algorithms typically scale exponentially with the data dimensionality or the subspace dimensionality of clusters.Second,the ... Many recently proposed subspace clustering methods suffer from two severe problems.First,the algorithms typically scale exponentially with the data dimensionality or the subspace dimensionality of clusters.Second,the clustering results are often sensitive to input parameters.In this paper,a fast algorithm of subspace clustering using attribute clustering is proposed to overcome these limitations.This algorithm first filters out redundant attributes by computing the Gini coef-ficient.To evaluate the correlation of every two non-redundant attributes,the relation matrix of non-redund-ant attributes is constructed based on the relation function of two dimensional united Gini coefficients.After applying an overlapping clustering algorithm on the relation matrix,the candidate of all interesting subspaces is achieved.Finally,all subspace clusters can be derived by clustering on interesting subspaces.Experiments on both synthesis and real datasets show that the new algorithm not only achieves a significant gain of runtime and quality to find subspace clusters,but also is insensitive to input parameters. 展开更多
关键词 subspace clustering high dimensional data attribute clustering
原文传递
Modified Lorentz Transformations and Space-Time Splitting According to the Inverse Relativity Model
20
作者 Michael Girgis 《Journal of Applied Mathematics and Physics》 2024年第7期2467-2489,共23页
Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fab... Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius. 展开更多
关键词 Four-Dimensional Vector Analysis Four-Dimensional subspace Causal Space Analysis of the Speed of Light Inverse Theory of Relativity
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部