AIM: To investigate the effect and mechanism of electro-acupuncture lEA) at ST25 and ST37 on irritable bowel syndrome (IBS) of rats. METHODS: A total of 21 male Sprague-Dawley rats were randomly divided into norm...AIM: To investigate the effect and mechanism of electro-acupuncture lEA) at ST25 and ST37 on irritable bowel syndrome (IBS) of rats. METHODS: A total of 21 male Sprague-Dawley rats were randomly divided into normal group, model group and EA group. A rat model of IBS was established by constraining the limbs and distending the colorectum of rats. Rats in EA group received bilateral EA at ST25 and ST37 with a sparse and intense waveform at a frequency of 2/50 Hz for 15 min, once a day for 7 d as a course. Rats in normal and model groups were stimulated by distending colorectum (CR). An abdominal withdrawal reflex (AWR) scoring system was used to evaluate improvements in visceral hypersensitivity. Toluidine blue-improved method, immunohistochemistry and radioimmunoassay were used to observe mucosal mast cells (MC), changes of substance P (SP) and substance P receptor (SPR) in colon and change of corticotropin-releasing hormone (CRH) in hypothalamus. RESULTS: The threshold of visceral sense was significantly lower in model group than in normal group,and significantly higher in EA group than in model group. The number of mucosal MC was greater in model group than in normal group and significantly smaller in EA group than in model group. The CRH level in hypothalamus of rats was significantly higher in model group than in normal group, which was remarkably decreased after electro-acupuncture treatment. The SP and SPR expression in colon of rats in model group was decreased after electro-acupuncture treatment. CONCLUSION: EA at ST25 and ST37 can decrease the number of mucosal MC and down-regulate the expression of CRH in hypothalamus, and the expression of SP and SPR in colon of rats with IBS.展开更多
Painful stimuli elicit first-line reflexive defensive reactions and,in many cases,also evoke second-line recuperative behaviors,the latter of which reflects the sensing of tissue damage and the alleviation of sufferin...Painful stimuli elicit first-line reflexive defensive reactions and,in many cases,also evoke second-line recuperative behaviors,the latter of which reflects the sensing of tissue damage and the alleviation of suffering.The lateral parabrachial nucleus(lPBN),composed of external-(elPBN),dorsal-(dlPBN),and central/superior-subnuclei(jointly referred to as slPBN),receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption.However,the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear.In this study,we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor(NK1R)(lPBNNK1R)are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle,while elPBN neurons are dispensable for driving such reactions.Notably,lPBNNK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats.Lastly,both lPBNNK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions.Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.展开更多
Parkinson's disease (PD) is the most common motor neurode- generative disorder affecting approximately 4 million people worldwide. Although PD presents primarily with motor dysfunction, non-motor symptoms including...Parkinson's disease (PD) is the most common motor neurode- generative disorder affecting approximately 4 million people worldwide. Although PD presents primarily with motor dysfunction, non-motor symptoms including cognitive decline, mood disorders, reduced olfaction and constipation are also of- ten present, with some of these non-motor symptoms even pre- senting prior to the onset of motor symptoms. It is well known that PD is largely caused by the gradual degeneration of dopa- minergic neurons within the substantia nigra pars compacta (SNc), along with the presence of protein aggregates called Lewy bodies, which consist primarily of ct-synuclein and are found in the cytoplasm of surviving neurons. This ongoing cell loss and Lewy body pathology is not confined to the SNc, but is also seen in other brain regions implicated in PD pathogenesis such as the locus ceruleus.展开更多
基金Supported by Open Fund of Key Laboratory of Acupuncture Combined with Medication (Nanjing University of TCM), Ministry of Education, No. KJA200809Shanghai Rising-Star Program, No. 08QA14064Shanghai Leading Academic Discipline Project, No. S30304
文摘AIM: To investigate the effect and mechanism of electro-acupuncture lEA) at ST25 and ST37 on irritable bowel syndrome (IBS) of rats. METHODS: A total of 21 male Sprague-Dawley rats were randomly divided into normal group, model group and EA group. A rat model of IBS was established by constraining the limbs and distending the colorectum of rats. Rats in EA group received bilateral EA at ST25 and ST37 with a sparse and intense waveform at a frequency of 2/50 Hz for 15 min, once a day for 7 d as a course. Rats in normal and model groups were stimulated by distending colorectum (CR). An abdominal withdrawal reflex (AWR) scoring system was used to evaluate improvements in visceral hypersensitivity. Toluidine blue-improved method, immunohistochemistry and radioimmunoassay were used to observe mucosal mast cells (MC), changes of substance P (SP) and substance P receptor (SPR) in colon and change of corticotropin-releasing hormone (CRH) in hypothalamus. RESULTS: The threshold of visceral sense was significantly lower in model group than in normal group,and significantly higher in EA group than in model group. The number of mucosal MC was greater in model group than in normal group and significantly smaller in EA group than in model group. The CRH level in hypothalamus of rats was significantly higher in model group than in normal group, which was remarkably decreased after electro-acupuncture treatment. The SP and SPR expression in colon of rats in model group was decreased after electro-acupuncture treatment. CONCLUSION: EA at ST25 and ST37 can decrease the number of mucosal MC and down-regulate the expression of CRH in hypothalamus, and the expression of SP and SPR in colon of rats with IBS.
基金supported by the Shenzhen Key Laboratory of Drug Addiction (ZDSYS20190902093601675)CAS Key Laboratory of Brain Connectome and Manipulation (2019DP173024)+2 种基金National Natural Science Foundation of China (82274358)Shenzhen-Hong Kong Institute of Brain ScienceGuangdong Basic and Applied Basic Research Foundation (2023B1515040009)
文摘Painful stimuli elicit first-line reflexive defensive reactions and,in many cases,also evoke second-line recuperative behaviors,the latter of which reflects the sensing of tissue damage and the alleviation of suffering.The lateral parabrachial nucleus(lPBN),composed of external-(elPBN),dorsal-(dlPBN),and central/superior-subnuclei(jointly referred to as slPBN),receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption.However,the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear.In this study,we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor(NK1R)(lPBNNK1R)are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle,while elPBN neurons are dispensable for driving such reactions.Notably,lPBNNK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats.Lastly,both lPBNNK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions.Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.
基金in part has been supported by the Neurosurgical Research Foundation, South Australia, Australia
文摘Parkinson's disease (PD) is the most common motor neurode- generative disorder affecting approximately 4 million people worldwide. Although PD presents primarily with motor dysfunction, non-motor symptoms including cognitive decline, mood disorders, reduced olfaction and constipation are also of- ten present, with some of these non-motor symptoms even pre- senting prior to the onset of motor symptoms. It is well known that PD is largely caused by the gradual degeneration of dopa- minergic neurons within the substantia nigra pars compacta (SNc), along with the presence of protein aggregates called Lewy bodies, which consist primarily of ct-synuclein and are found in the cytoplasm of surviving neurons. This ongoing cell loss and Lewy body pathology is not confined to the SNc, but is also seen in other brain regions implicated in PD pathogenesis such as the locus ceruleus.