In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by m...In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt-spinning technique. The structures of the as-spun alloys were characterized by XRD and TEM. The gaseous and electrochemical hydrogen storage kinetics of the alloys was measured. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. The amorphization degree of the alloys visibly increases with rising of Co content. Furthermore, the substitution of Co for Ni significantly improves the hydrogen storage kinetics of the alloys. With an increase in the amount of Co substitution from 0 to 0.4, the hydrogen absorption saturation ratio of the as-spun (15 m/s) alloy increases from 81.2% to 84.9%, the hydrogen desorption ratio from 17.60% to 64.79%, the hydrogen diffusion coefficient increases from 1.07×10-11 to 2.79×10-11 cm2/s and the limiting current density increases from 46.7 to 191.7 mA/g, respectively.展开更多
The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0....The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.展开更多
The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance ...The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.展开更多
In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys w...In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s).展开更多
In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4...In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).展开更多
In order to improve the electrochemical cycle stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloys was partially substituted by M (M=Cu, Al, Mn). A new La-Mg-Ni system electrode alloys La...In order to improve the electrochemical cycle stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloys was partially substituted by M (M=Cu, Al, Mn). A new La-Mg-Ni system electrode alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Cu, Al, Mn; x=0, 0.1) were prepared by casting and rapid quenching. The effects of element substitution and rapid quenching on the microstructures and electrochemical performances of the alloys were investigated. The results by XRD, SEM and TEM show that the alloys have a multiphase structure, including the (La, Mg)Ni3 phase, the LaNi5 phase and the LaNi2 phase. The rapid quenching and element substitution have an imperceptible influence on the phase compositions of the alloys, but both change the phase abundance of the alloys. The rapid quenching significantly improves the composition homogeneity of the alloys and markedly decreases the grain size of the alloys. The Cu substitution promotes the formation of an amorphous phase in the as-quenched alloy, and a reversal result by the Al substitution. The electrochemical measurement indicates that the element substitution decreases the discharge capacity of the alloys, whereas it obviously improves the cycle stability of the alloys. The positive influence of element substitution on the cycle life of the alloys is in sequence Al>Cu>Mn, and negative influence on the discharge capacity is in sequence Al>Mn>Cu. The rapid quenching significantly enhances the cycle stability of the alloys, but it leads to a different extent decrease of the discharge capacity of the alloys.展开更多
alculations of the nonlinear second-order optical susceptlbilities(β_(ijk))for sub- stituted tl1iophene derivative;with quinoidlike conformation are reported.These systetems possess small dipole moment;and large diff...alculations of the nonlinear second-order optical susceptlbilities(β_(ijk))for sub- stituted tl1iophene derivative;with quinoidlike conformation are reported.These systetems possess small dipole moment;and large differences between dipole mo- ments of ground and first-excited states.Geometry optimizations of the molecules investigated were carried out using AM 1 method.The calculations were performed using INDO/CI method comboned with a sum-over-states expression for β_(jik). The calculated results sbw that the second-order susceptibility is a function of the na- ture and location of substituents and is larger for disubstituted molecules than monosubstituted molecules. Bipolymeric thiophenemetmne with NH_2/NO_2 groups was calctilated to have a β_μof 79. 920 × 10 ̄(-30) esu. It was found that the NH_2 and NO_2 groups in above disubstituted molecules are pull-pull groups in ground states,but are usual push-pull groups in the first excited states.展开更多
The element Ni in the Mg2Ni alloy is partially substituted by M(M = Cu, Co, Mn) in order to ameliorate the electrochemical hydrogen storage performances of Mg2Ni-type electrode alloys. The nanocrystalline and amorph...The element Ni in the Mg2Ni alloy is partially substituted by M(M = Cu, Co, Mn) in order to ameliorate the electrochemical hydrogen storage performances of Mg2Ni-type electrode alloys. The nanocrystalline and amorphous Mg20Ni10-xMx(M = None, Cu, Co, Mn; x = 0-4) alloys were prepared by melt spinning. The effects of the M(M = Cu, Co, Mn) content on the structures and electrochemical hydrogen storage characteristics of the as-cast and spun alloys were comparatively studied. The analyses by XRD, SEM and HRTEM reveal that all the as-cast alloys have a major phase of Mg2Ni but the M(M = Co, Mn) substitution brings on the formation of some secondary phases, MgCo2 and Mg for the(M = Co) alloy, and Mn Ni and Mg for the(M = Mn) alloy. Besides, the as-spun(M = None, Cu) alloys display an entirely nanocrystalline structure, whereas the as-spun(M = Co, Mn) alloys hold a nanocrystalline/amorphous structure, suggesting that the substitution of M(M = Co, Mn) for Ni facilitates the glass formation in the Mg2Ni-type alloys. The electrochemical measurements indicate that the variation of M(M = Cu, Co, Mn) content engenders an obvious effect on the electrochemical performances of the as-cast and spun alloys. To be specific, the cyclic stabilities of the alloys augment monotonously with increasing M(M = Cu, Co, Mn) content, and the capacity retaining rate(S20) is in an order of(M = Cu) 〉(M = Co) 〉(M = Mn) 〉(M = None) for x≤1 but changes to(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None) for x≥2. The discharge capacities of the as-cast and spun alloys always grow with the rising of M(M = Co, Mn) content but first mount up and then go down with increasing M(M = Cu) content. Whatever the M content is, the discharge capacities are in sequence:(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None). The high rate discharge abilities(HRDs) of all the alloys grow clearly with rising M(M = Cu, Co) content except for(M = Mn) alloy, whose HRD has a maximum value with varying M(M = Mn) content. Furthermore, for the as-cast alloys, the HRD is in order of(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None), while for the as-spun(20 m·s^-1) alloys, it changes from(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None) for x = 1 to(M = Cu) 〉(M = Co) 〉(M = None) 〉(M = Mn) for x = 4.展开更多
Substituting chemical fertilizers with manure is an important method for efficient nutrient management in rice cropping systems of China.Labile nitrogen(N)is the most active component of the soil N pool and plays an e...Substituting chemical fertilizers with manure is an important method for efficient nutrient management in rice cropping systems of China.Labile nitrogen(N)is the most active component of the soil N pool and plays an essential role in soil fertility.However,the effects of manure substitution on soil labile N in rice cropping systems and their relationships with soil properties,fertilization practices,and climatic conditions remain unclear and should be systematically quantified.Here,we investigated rice grain yield and four types of soil labile N that have been widely reported,including available nitrogen(AN),ammonium nitrogen(NH_(4)^(+)-N),nitrate nitrogen(NO_(3)^(−)-N),and microbial biomass nitrogen(MBN).We reviewed 187 published articles and performed a meta-analysis to quantify the effects of manure substitution on yield and soil labile N.The results showed that manure substitution increased AN,MBN,NH+4-N,and NO−3-N by 11.3%,38.5%,5.9%,and 8.1%,respectively.Partial substitution significantly increased the yield by 1.4%–5.9%,but full substitution significantly decreased the yield by 2.9%.The positive effects of manure substitution on yield and AN were stronger with long-term fertilization.The differences in responses varied across specific manure types,N application rates,soil properties,and climatic factors.In conclusion,manure substitution can increase soil labile N and is regarded as an efficient strategy for improving soil N fertility and a recommended measure for applying both chemical and organic fertilizers in rice systems.This study provides evidence of the effects of manure substitution on yield enhancement by increasing soil labile N.展开更多
Although the forest floor plays important roles in water-holding and nutrient cycling, there is not enough knowledge of the functional changes of the forest floor resulting from changes in vegetation. To evaluate the ...Although the forest floor plays important roles in water-holding and nutrient cycling, there is not enough knowledge of the functional changes of the forest floor resulting from changes in vegetation. To evaluate the effect on the hydrological properties of forest floor by the substitution of plantation species for native coppice, we selected four species substituting plantations and one native coppice (secondary native broad-leaved forest, dominated by Quercus liaotungensis and Corylus heterophylla var. sutchuenensis) (QC) as a comparison forest. The substituting plantations were Cercidiphyllum japonicum (Cj), Pinus tabulaeformis (Pt), Pinus armandi (Pa), Larix kaempferi (Lk). These were established in 1987 with a stocking density of approximately 2500 stem ha -1 . Thickness and the amount of floor in coniferous plantations were significantly higher compared to secondary native broad-leaved forest and pure broad- leaved plantation. The maximal water-holding capacity of the floor showed the same trend as thickness and amount of litter. Main contributors to the difference in hydrological characteristics in the plantations were the quantity of forest floor and the maximal water holding capacity per unit weight of the floor. The relationships between water absorption processes, water absorption rate and the immersion time for litter, fitted to logarithmic and exponential regressions, respectively. Water absorption processes differed significantly between the various plantations and different decomposition floor horizons. Water absorption characteristics were influenced by leaf structure in various tree species and the degree of decomposed litter. Our results showed that litter amount in coniferous plantations were significantly higher than in deciduous broad-leaved plantation. This suggests that a large amount of nutrients are held in the litter horizon, delaying return to the soil and utilization by plants. At the same time, maximal water-holding capacity of the forest floor in F [fermentation] and H [hummus] horizons was significantly higher than that in L [fresh litter] horizon. Therefore, improving litter transformation from L horizon to F and H horizons by promoting forest floor environment would be one of the best methods for plantation management.展开更多
Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidif...Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.展开更多
Access to off-farm employment has been expected to be a critical approach to ending hunger and all forms of malnutrition,two important targets of achieving Zero Hunger.This study aims to investigate the role of off-fa...Access to off-farm employment has been expected to be a critical approach to ending hunger and all forms of malnutrition,two important targets of achieving Zero Hunger.This study aims to investigate the role of off-farm employment in improving dietary diversity through substitution effect and complementary effect with agricultural production activities and income effect.This study adopts Poisson/Tobit/Probit/OLS regressions and the instrument variable method based on the primary survey data collected among 1,282 households at 12 sites in environmentally and economically vulnerable areas of China,Nepal,Cambodia,Thailand,and Myanmar in 2019.The results show that off-farm employment is positively associated with household dietary diversity and the consumption of flesh meat,fish and other aquatic animals,fruits,and milk and dairy products,which are rich in protein and micronutrients.The results of mechanism analysis show that off-farm employment contributes to household dietary diversity by improving crop diversity,especially for poor households,boosting the probability of livestock raising for households with the middle one-third disposal income,and increasing household income.The positive association between off-farm employment and household dietary diversity is much higher for households with the bottom one-third disposal income,low illiteracy,and from upper-middle income countries.These findings imply that off-farm employment does play a vital role in achieving multiple benefits of poverty alleviation,malnutrition reduction,and agrobiodiversity conservation in environmentally and economically vulnerable areas.However,it may enlarge the gaps in dietary diversity between households with low human capital and from low and lower-middle income countries and those with high human capital and from middle-high countries.展开更多
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
Railway accidents,particularly serious derailments,can lead to catastrophic consequences.Therefore,it is essential to prevent derailment escalation to reduce the likelihood of severe derailments.Train post-derailment ...Railway accidents,particularly serious derailments,can lead to catastrophic consequences.Therefore,it is essential to prevent derailment escalation to reduce the likelihood of severe derailments.Train post-derailment behaviours and containment methods play a critical role in preventing derailment escalation and providing passive safety protection and accident prevention in the event of a derailment.However,despite the increasing attention on this field from academia and industry in recent years,there is a lack of systematic exploration and summarization of emerging applications and containment methods in train post-derailment research.For this reason,this paper presents a comprehensive review of existing studies on train post-derailment behaviours,encompassing various topics such as post-derailment contact-impact models,dynamic modelling and simulation techniques,and the primary factors influencing post-derailment behaviours.Significantly,this review introduces and elucidates substitute guidance mechanisms(SGMs),which serve as railway-specific passive safety protection and accident prevention measures.The various types of SGMs are depicted,and their ongoing developments and applications are explored in depth.The review additionally points out several unresolved challenges including the adverse effects of SGMs,and proposes future research directions to advance the theoretical understanding and practical application of train post-derailment behaviours and containment methods.This review seeks to be a valuable reference for railway industry professionals in preventing catastrophic derailment consequences through post-derailment containment methods.展开更多
Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transiti...Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.展开更多
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the ne...Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization.Material flow analysis is a powerful tool for tracking material flows and stocks,aiding resource management and environmental decision-making.However,the full extent of its methodological dimensions,particularly within the context of the wood supply chain,remains relatively unexplored.In this study,we delve into the existing literature on wood flow analysis,discussing its primary objectives,materials involved,temporal and spatial scales,data sources,units,and conversion factors.Additionally,data uncertainty,data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper.Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials,where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products.The immediate impact of short-term wood cascading might not be as robust as the substitution effect,with energy substitution showcasing better results than material substitution.However,it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective.Strategies for improving wood efficiency involve maximizing material use,advancing construction technologies,extending product lifespans,promoting cascade use,and optimizing energy recovery processes.The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.展开更多
Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6...Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6.1-5.4;x=0.05-0.20)synthesized using the ceramic method,showed that Co^(2+)preferentially enters the lattice as the Fe/Sr ratio decreases.This results in a decrease in the lattice constants a and c due to oxygen vacancies and iron ion deficiency.The impact of Co substitution on morphology is minor compared to the effect of the Fe/Sr ratio.As the Fe/Sr ratio decreases and the Co content increases,the saturation magnetization decreases.The magnetic anisotropy field exhibits a nonlinear change,generally increasing with higher Fe/Sr ratios and Co content.These changes in the performance of permanent magnets are attributed to the absence of Fe^(3+)ions at the 12k+2a and 2b sites and the substitution of Co^(2+)at the 2b site.This suggests that by adjusting the Fe/Sr ratio and appropriate Co substitution,the magnetic anisotropy field of M-type strontium ferrite can be effectively optimized.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
基金Projects(50871050,50961009)supported by the National Natural Science Foundation of ChinaProjects(2010ZD05,2011ZD10)supported by Natural Science Foundation of Inner Mongolia,ChinaProject(NJzy08071)supported by High Education Science Research Project of Inner Mongolia,China
文摘In order to improve the hydrogen storage kinetics of the Mg2Ni-type alloys, Ni in the alloy was partially substituted with element Co. The Mg2Ni-type Mg2Ni1-xCox (x=0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt-spinning technique. The structures of the as-spun alloys were characterized by XRD and TEM. The gaseous and electrochemical hydrogen storage kinetics of the alloys was measured. The results show that the substitution of Co for Ni notably enhances the glass forming ability of the Mg2Ni-type alloy. The amorphization degree of the alloys visibly increases with rising of Co content. Furthermore, the substitution of Co for Ni significantly improves the hydrogen storage kinetics of the alloys. With an increase in the amount of Co substitution from 0 to 0.4, the hydrogen absorption saturation ratio of the as-spun (15 m/s) alloy increases from 81.2% to 84.9%, the hydrogen desorption ratio from 17.60% to 64.79%, the hydrogen diffusion coefficient increases from 1.07×10-11 to 2.79×10-11 cm2/s and the limiting current density increases from 46.7 to 191.7 mA/g, respectively.
基金Projects(51161015,51371094)supported by the National Natural Science Foundations of China
文摘The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623201)National Natural Science Foundation of China(No.51302070)
文摘The effect of curing regime on degree ofAl3+ substituting for Si^4+ (Al/Si ratio) in C-S-H gels of hardened Portland cement pastes was investigated by 29Si magic angel spinning (MAS) nuclear magnetic resonance (NMR) with deconvolution technique. The curing regimes included the constant temperature (20, 40, 60 and 80 ℃) and variable temperature (simulated internal temperature of mass concrete with 60 ℃ peak). The results indicate that constant temperature of 20 ℃ is beneficial to substitution ofAl3+ for Si4+, and AI/Si ratio changes to be steady after 180 d. The increase of Al/Si ratio at 40 ℃is less than that at 20℃ for 28 d. The other three regimes of high temperature increase Al/Si ratio only before 3 d, on the contrary to that from 3 to 28 d. However, the 20 ℃ curing stage from 28 to 180 d at variable temperature regime, is beneficial to the increase of AI/Si ratio which is still lower than that at constant temperature regime of 20 ℃ for the same age. A nonlinear relation exists between the Al/Si ratio and temperature variation or mean chain length (MCL) of C-S-H gels, furthermore, the amount ofAl3+ which can occupy the bridging tetrahedra sites in C-S-H structure is insufficient in hardened Portland cement pastes.
基金Project(2006AA05Z132) supported by the National High-tech Research and Development Program of ChinaProjects(50871050, 50961009) supported by the National Natural Science Foundation of China+1 种基金Project(2010ZD05) supported by the Natural Science Foundation of Inner Mongolia, ChinaProject(NJzy08071) supported by the High Education Science Research Program of Inner Mongolia, China
文摘In order to improve the hydriding and dehydriding kinetics of the Mg2Ni-type alloys,Ni in the alloy is substituted by element Co. The nanocrystalline and amorphous Mg2Ni-type Mg2Ni1-xCox (x=0,0.1,0.2,0.3,0.4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were studied with an X-ray diffractometer (XRD) and a high resolution transmission electronic microscope (HRTEM). An investigation on the thermal stability of the as-spun alloys was carried out with a differential scanning calorimeter (DSC). The hydrogen absorption and desorption kinetics of the alloys were measured with an automatically controlled Sieverts apparatus. The results demonstrate that the substitution of Co for Ni does not alter the major phase of Mg2Ni but results in the formation of secondary phase MgCo2. No amorphous phase is detected in the as-spun Co-free alloy,but a certain amount of amorphous phase is clearly found in the as-spun Co-containing alloys. The substitution of Co for Ni exerts a slight influence on the hydriding kinetics of the as-spun alloy. However,it dramatically enhances the dehydriding kinetics of the as-cast and spun alloys. As Co content (x) increases from 0 to 0.4,the hydrogen desorption capacity increases from 0.19% to 1.39% (mass fraction) in 20 min for the as-cast alloy,and from 0.89% to 2.18% (mass fraction) for the as-spun alloy (30 m/s).
基金Projects(51161015,51371094)supported by National Natural Science Foundations of ChinaProject(2011ZD10)supported by Natural Science Foundation of Inner Mongolia,China
文摘In this work,a comprehensive comparison regarding the impacts of M(M=Cu,Co,Mn)substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10-xMx(M=Cu,Co,Mn; x=0-4)alloys prepared by melt spinning has been carried out.The analysis of XRD and TEM reveals that the as-spun(M=None,Cu)alloys display an entire nanocrystalline structure,whereas the as-spun(M=Co,Mn)alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4,indicating that the substitution of M(M=Co,Mn)for Ni facilitates the glass formation in the Mg2Ni-type alloy.Besides,all the as-spun alloys have a major phase of Mg2Ni but M(M=Co,Mn)substitution brings on the formation of some secondary phases,MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn.Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system,the impacts engendered by M(M=Cu,Co,Mn)substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident.The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M(M=Cu,Co,Mn)content.Particularly,the M(M= Mn)substitution results in a sharp drop in the hydriding kinetics when x=4.The M(M=Cu,Co,Mn)substitution ameliorates the dehydriding kinetics dramatically in the order(M=Co)>(M=Mn)>(M=Cu).The electrochemical kinetics of the alloys visibly grows with M content rising for(M=Cu,Co),while it first increases and then declines for(M=Mn).
基金This work was financially supported by National Natural Science Foundation of China ( No.50131040)Science and Technology Planned Project of Inner Mongolia, China ( No.20050205)Higher Education Science Research Project ofInner Mongolia, China (No.NJ05064)
文摘In order to improve the electrochemical cycle stability of La-Mg-Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloys was partially substituted by M (M=Cu, Al, Mn). A new La-Mg-Ni system electrode alloys La0.7Mg0.3Ni2.55-xCo0.45Mx (M=Cu, Al, Mn; x=0, 0.1) were prepared by casting and rapid quenching. The effects of element substitution and rapid quenching on the microstructures and electrochemical performances of the alloys were investigated. The results by XRD, SEM and TEM show that the alloys have a multiphase structure, including the (La, Mg)Ni3 phase, the LaNi5 phase and the LaNi2 phase. The rapid quenching and element substitution have an imperceptible influence on the phase compositions of the alloys, but both change the phase abundance of the alloys. The rapid quenching significantly improves the composition homogeneity of the alloys and markedly decreases the grain size of the alloys. The Cu substitution promotes the formation of an amorphous phase in the as-quenched alloy, and a reversal result by the Al substitution. The electrochemical measurement indicates that the element substitution decreases the discharge capacity of the alloys, whereas it obviously improves the cycle stability of the alloys. The positive influence of element substitution on the cycle life of the alloys is in sequence Al>Cu>Mn, and negative influence on the discharge capacity is in sequence Al>Mn>Cu. The rapid quenching significantly enhances the cycle stability of the alloys, but it leads to a different extent decrease of the discharge capacity of the alloys.
文摘alculations of the nonlinear second-order optical susceptlbilities(β_(ijk))for sub- stituted tl1iophene derivative;with quinoidlike conformation are reported.These systetems possess small dipole moment;and large differences between dipole mo- ments of ground and first-excited states.Geometry optimizations of the molecules investigated were carried out using AM 1 method.The calculations were performed using INDO/CI method comboned with a sum-over-states expression for β_(jik). The calculated results sbw that the second-order susceptibility is a function of the na- ture and location of substituents and is larger for disubstituted molecules than monosubstituted molecules. Bipolymeric thiophenemetmne with NH_2/NO_2 groups was calctilated to have a β_μof 79. 920 × 10 ̄(-30) esu. It was found that the NH_2 and NO_2 groups in above disubstituted molecules are pull-pull groups in ground states,but are usual push-pull groups in the first excited states.
基金Funded by the National Natural Science Foundations of China(Nos.51161015,51371094)Natural Science Foundation of Inner Mongolia,China(No.2011ZD10)
文摘The element Ni in the Mg2Ni alloy is partially substituted by M(M = Cu, Co, Mn) in order to ameliorate the electrochemical hydrogen storage performances of Mg2Ni-type electrode alloys. The nanocrystalline and amorphous Mg20Ni10-xMx(M = None, Cu, Co, Mn; x = 0-4) alloys were prepared by melt spinning. The effects of the M(M = Cu, Co, Mn) content on the structures and electrochemical hydrogen storage characteristics of the as-cast and spun alloys were comparatively studied. The analyses by XRD, SEM and HRTEM reveal that all the as-cast alloys have a major phase of Mg2Ni but the M(M = Co, Mn) substitution brings on the formation of some secondary phases, MgCo2 and Mg for the(M = Co) alloy, and Mn Ni and Mg for the(M = Mn) alloy. Besides, the as-spun(M = None, Cu) alloys display an entirely nanocrystalline structure, whereas the as-spun(M = Co, Mn) alloys hold a nanocrystalline/amorphous structure, suggesting that the substitution of M(M = Co, Mn) for Ni facilitates the glass formation in the Mg2Ni-type alloys. The electrochemical measurements indicate that the variation of M(M = Cu, Co, Mn) content engenders an obvious effect on the electrochemical performances of the as-cast and spun alloys. To be specific, the cyclic stabilities of the alloys augment monotonously with increasing M(M = Cu, Co, Mn) content, and the capacity retaining rate(S20) is in an order of(M = Cu) 〉(M = Co) 〉(M = Mn) 〉(M = None) for x≤1 but changes to(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None) for x≥2. The discharge capacities of the as-cast and spun alloys always grow with the rising of M(M = Co, Mn) content but first mount up and then go down with increasing M(M = Cu) content. Whatever the M content is, the discharge capacities are in sequence:(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None). The high rate discharge abilities(HRDs) of all the alloys grow clearly with rising M(M = Cu, Co) content except for(M = Mn) alloy, whose HRD has a maximum value with varying M(M = Mn) content. Furthermore, for the as-cast alloys, the HRD is in order of(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None), while for the as-spun(20 m·s^-1) alloys, it changes from(M = Co) 〉(M = Mn) 〉(M = Cu) 〉(M = None) for x = 1 to(M = Cu) 〉(M = Co) 〉(M = None) 〉(M = Mn) for x = 4.
基金supported by the Major Project for Support System Construction of Agriculture Green Development from the Ministry of Agriculture and Rural Affairs of China(No.NG/LS2020-71-05)the National Major Science and Technology Project of China(No.2014ZX07101-012).
文摘Substituting chemical fertilizers with manure is an important method for efficient nutrient management in rice cropping systems of China.Labile nitrogen(N)is the most active component of the soil N pool and plays an essential role in soil fertility.However,the effects of manure substitution on soil labile N in rice cropping systems and their relationships with soil properties,fertilization practices,and climatic conditions remain unclear and should be systematically quantified.Here,we investigated rice grain yield and four types of soil labile N that have been widely reported,including available nitrogen(AN),ammonium nitrogen(NH_(4)^(+)-N),nitrate nitrogen(NO_(3)^(−)-N),and microbial biomass nitrogen(MBN).We reviewed 187 published articles and performed a meta-analysis to quantify the effects of manure substitution on yield and soil labile N.The results showed that manure substitution increased AN,MBN,NH+4-N,and NO−3-N by 11.3%,38.5%,5.9%,and 8.1%,respectively.Partial substitution significantly increased the yield by 1.4%–5.9%,but full substitution significantly decreased the yield by 2.9%.The positive effects of manure substitution on yield and AN were stronger with long-term fertilization.The differences in responses varied across specific manure types,N application rates,soil properties,and climatic factors.In conclusion,manure substitution can increase soil labile N and is regarded as an efficient strategy for improving soil N fertility and a recommended measure for applying both chemical and organic fertilizers in rice systems.This study provides evidence of the effects of manure substitution on yield enhancement by increasing soil labile N.
基金the National Natural Science Foundation of China(No.40701181)the Strategic Leader in Science and Technology Projects(No.XDA05070306)+1 种基金the National Science & Technology Pillar Program in12th Five-year Plan of China(No.2011BAC09B04-02)Main Direction Program of Knowledge Innovation of CAS(No.KSCX2-EW-J-22)
文摘Although the forest floor plays important roles in water-holding and nutrient cycling, there is not enough knowledge of the functional changes of the forest floor resulting from changes in vegetation. To evaluate the effect on the hydrological properties of forest floor by the substitution of plantation species for native coppice, we selected four species substituting plantations and one native coppice (secondary native broad-leaved forest, dominated by Quercus liaotungensis and Corylus heterophylla var. sutchuenensis) (QC) as a comparison forest. The substituting plantations were Cercidiphyllum japonicum (Cj), Pinus tabulaeformis (Pt), Pinus armandi (Pa), Larix kaempferi (Lk). These were established in 1987 with a stocking density of approximately 2500 stem ha -1 . Thickness and the amount of floor in coniferous plantations were significantly higher compared to secondary native broad-leaved forest and pure broad- leaved plantation. The maximal water-holding capacity of the floor showed the same trend as thickness and amount of litter. Main contributors to the difference in hydrological characteristics in the plantations were the quantity of forest floor and the maximal water holding capacity per unit weight of the floor. The relationships between water absorption processes, water absorption rate and the immersion time for litter, fitted to logarithmic and exponential regressions, respectively. Water absorption processes differed significantly between the various plantations and different decomposition floor horizons. Water absorption characteristics were influenced by leaf structure in various tree species and the degree of decomposed litter. Our results showed that litter amount in coniferous plantations were significantly higher than in deciduous broad-leaved plantation. This suggests that a large amount of nutrients are held in the litter horizon, delaying return to the soil and utilization by plants. At the same time, maximal water-holding capacity of the forest floor in F [fermentation] and H [hummus] horizons was significantly higher than that in L [fresh litter] horizon. Therefore, improving litter transformation from L horizon to F and H horizons by promoting forest floor environment would be one of the best methods for plantation management.
基金supported by the National Key Research and Development Program of China(2022YFD2301403-2)the Major Special Project of Anhui Province,China(2021d06050003)+2 种基金the Postdoctoral Foundation of Anhui Province,China(2022B638)the Special Project of Zhongke Bengbu Technology Transfer Center,China(ZKBB202103)the Grant of the President Foundation of Hefei Institutes of Physical Science of Chinese Academy of Sciences(YZJJ2023QN37)。
文摘Synthetic nitrogen(N)fertilizer has made a great contribution to the improvement of soil fertility and productivity,but excessive application of synthetic N fertilizer may cause agroecosystem risks,such as soil acidification,groundwater contamination and biodiversity reduction.Meanwhile,organic substitution has received increasing attention for its ecologically and environmentally friendly and productivity benefits.However,the linkages between manure substitution,crop yield and the underlying microbial mechanisms remain uncertain.To bridge this gap,a three-year field experiment was conducted with five fertilization regimes:i)Control,non-fertilization;CF,conventional synthetic fertilizer application;CF_(1/2)M_(1/2),1/2 N input via synthetic fertilizer and 1/2 N input via manure;CF_(1/4)M_(3/4),1/4 N input synthetic fertilizer and 3/4 N input via manure;M,manure application.All fertilization treatments were designed to have equal N input.Our results showed that all manure substituted treatments achieved high soil fertility indexes(SFI)and productivities by increasing the soil organic carbon(SOC),total N(TN)and available phosphorus(AP)concentrations,and by altering the bacterial community diversity and composition compared with CF.SOC,AP,and the soil C:N ratio were mainly responsible for microbial community variations.The co-occurrence network revealed that SOC and AP had strong positive associations with Rhodospirillales and Burkholderiales,while TN and C:N ratio had positive and negative associations with Micromonosporaceae,respectively.These specific taxa are implicated in soil macroelement turnover.Random Forest analysis predicted that both biotic(bacterial composition and Micromonosporaceae)and abiotic(AP,SOC,SFI,and TN)factors had significant effects on crop yield.The present work strengthens our understanding of the effects of manure substitution on crop yield and provides theoretical support for optimizing fertilization strategies.
基金We acknowledge the financial support from the National Natural Science Foundation of China(72373140 and 42061144004)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20010303).
文摘Access to off-farm employment has been expected to be a critical approach to ending hunger and all forms of malnutrition,two important targets of achieving Zero Hunger.This study aims to investigate the role of off-farm employment in improving dietary diversity through substitution effect and complementary effect with agricultural production activities and income effect.This study adopts Poisson/Tobit/Probit/OLS regressions and the instrument variable method based on the primary survey data collected among 1,282 households at 12 sites in environmentally and economically vulnerable areas of China,Nepal,Cambodia,Thailand,and Myanmar in 2019.The results show that off-farm employment is positively associated with household dietary diversity and the consumption of flesh meat,fish and other aquatic animals,fruits,and milk and dairy products,which are rich in protein and micronutrients.The results of mechanism analysis show that off-farm employment contributes to household dietary diversity by improving crop diversity,especially for poor households,boosting the probability of livestock raising for households with the middle one-third disposal income,and increasing household income.The positive association between off-farm employment and household dietary diversity is much higher for households with the bottom one-third disposal income,low illiteracy,and from upper-middle income countries.These findings imply that off-farm employment does play a vital role in achieving multiple benefits of poverty alleviation,malnutrition reduction,and agrobiodiversity conservation in environmentally and economically vulnerable areas.However,it may enlarge the gaps in dietary diversity between households with low human capital and from low and lower-middle income countries and those with high human capital and from middle-high countries.
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金support from the National Natural Science Foundation of China (No.52172407 and No.U19A20110)the Natural Science Foundation of Sichuan Province (No.2022NSFSC0415).
文摘Railway accidents,particularly serious derailments,can lead to catastrophic consequences.Therefore,it is essential to prevent derailment escalation to reduce the likelihood of severe derailments.Train post-derailment behaviours and containment methods play a critical role in preventing derailment escalation and providing passive safety protection and accident prevention in the event of a derailment.However,despite the increasing attention on this field from academia and industry in recent years,there is a lack of systematic exploration and summarization of emerging applications and containment methods in train post-derailment research.For this reason,this paper presents a comprehensive review of existing studies on train post-derailment behaviours,encompassing various topics such as post-derailment contact-impact models,dynamic modelling and simulation techniques,and the primary factors influencing post-derailment behaviours.Significantly,this review introduces and elucidates substitute guidance mechanisms(SGMs),which serve as railway-specific passive safety protection and accident prevention measures.The various types of SGMs are depicted,and their ongoing developments and applications are explored in depth.The review additionally points out several unresolved challenges including the adverse effects of SGMs,and proposes future research directions to advance the theoretical understanding and practical application of train post-derailment behaviours and containment methods.This review seeks to be a valuable reference for railway industry professionals in preventing catastrophic derailment consequences through post-derailment containment methods.
基金supported by the National Natural Science Foundation of China(No.52122407)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC3048)the Key Research and Development Program of Yunnan Province,China(No.202103AA080019).
文摘Cobalt(Co)serves as a stabilizer in the lattice structure of high-capacity nickel(Ni)-rich cathode materials.However,its high cost and toxicity still limit its development.In general,it is possible to perform transition metal substitution to reduce the Co content.However,the traditional coprecipitation method cannot satisfy the requirements of multielement coprecipitation and uniform distribution of elements due to the differences between element concentration and deposition rate.In this work,spray pyrolysis was used to prepare LiNi_(0.9)Co_(0.1-x)W_(x)O_(2)(LNCW).In this regard,the pyrolysis behavior of ammonium metatungstate was analyzed,together with the substitu-tion of W for Co.With the possibility of spray pyrolysis,the Ni-Co-W-containing oxide precursor presents a homogeneous distribution of metal elements,which is beneficial for the uniform substitution of W in the final materials.It was observed that with W substitution,the size of primary particles decreased from 338.06 to 71.76 nm,and cation disordering was as low as 3.34%.As a consequence,the pre-pared LNCW exhibited significantly improved electrochemical performance.Under optimal conditions,the lithium-ion battery assembled with LiNi_(0.9)Co_(0.0925)W_(0.0075)O_(2)(LNCW-0.75mol%)had an improved capacity retention of 82.7%after 200 cycles,which provides insight in-to the development of Ni-rich low-Co materials.This work presents that W can compensate for the loss caused by Co deficiency to a cer-tain extent.
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
基金The China Scholarship Council finances this research (Grant number CSC202010220001)。
文摘Wood,an essential natural resource in human civilization,remains widely used despite advances in technology and material substitution.The surge in greenhouse gas emissions and environmental concerns accentuates the need for optimizing wood utilization.Material flow analysis is a powerful tool for tracking material flows and stocks,aiding resource management and environmental decision-making.However,the full extent of its methodological dimensions,particularly within the context of the wood supply chain,remains relatively unexplored.In this study,we delve into the existing literature on wood flow analysis,discussing its primary objectives,materials involved,temporal and spatial scales,data sources,units,and conversion factors.Additionally,data uncertainty,data reconciliation and crucial assumptions in material flow analysis are highlighted in this paper.Key findings reveal the significance of wood cascading and substitution effects by replacing non-wood materials,where they can reduce greenhouse gas emissions more than the natural carbon sink of forests and wood products.The immediate impact of short-term wood cascading might not be as robust as the substitution effect,with energy substitution showcasing better results than material substitution.However,it's crucial to note that these conclusions could experience significant reversal from a long-term and global perspective.Strategies for improving wood efficiency involve maximizing material use,advancing construction technologies,extending product lifespans,promoting cascade use,and optimizing energy recovery processes.The study underscores the need for standardized approaches in wood flow analysis and emphasizes the potential of wood efficiency strategies in addressing environmental challenges.
基金support from the Research Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(Grant No.E355B001)Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-3)Science Center of the National Natural Science Foundation of China(Grant No.52088101).
文摘Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6.1-5.4;x=0.05-0.20)synthesized using the ceramic method,showed that Co^(2+)preferentially enters the lattice as the Fe/Sr ratio decreases.This results in a decrease in the lattice constants a and c due to oxygen vacancies and iron ion deficiency.The impact of Co substitution on morphology is minor compared to the effect of the Fe/Sr ratio.As the Fe/Sr ratio decreases and the Co content increases,the saturation magnetization decreases.The magnetic anisotropy field exhibits a nonlinear change,generally increasing with higher Fe/Sr ratios and Co content.These changes in the performance of permanent magnets are attributed to the absence of Fe^(3+)ions at the 12k+2a and 2b sites and the substitution of Co^(2+)at the 2b site.This suggests that by adjusting the Fe/Sr ratio and appropriate Co substitution,the magnetic anisotropy field of M-type strontium ferrite can be effectively optimized.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.