In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav...Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.展开更多
20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the ...20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.展开更多
The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) wit...The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.展开更多
Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inheren...Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.展开更多
The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were d...The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.展开更多
The gas phase thermodynamic properties of 135 polychlorinated xanthones(PCXTs)are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G**level.It ...The gas phase thermodynamic properties of 135 polychlorinated xanthones(PCXTs)are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G**level.It is found that the chlorine substitution pattern strongly influences the thermodynamic properties of the compounds.The thermodynamic properties of congeners with the same number of chlorines also depend on the chlorine substitution pattern,especially for ortho-substituted congeners.PCXT congeners with one phenyl ring fully chlorinated are found to be the least stable among the analogues.The effect of the chlorine substitution pattern is quantitatively studied by considering the number and position of Cl atom substitution(NPCS).The results show that the NPCS model may be used to predict the thermodynamic properties for all 135 PCXT congeners. In addition,the values of molar heat capacities at constant pressure(cp,m)from 200 to 1000 K for PCXT congeners are calculated,and the temperature dependence relation of this parameter is obtained using the least-squares method.展开更多
The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 pr...The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.展开更多
The thermodynamic properties of 135 polychlorinated phenothiazines (PCPTZs) in the standard state are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B...The thermodynamic properties of 135 polychlorinated phenothiazines (PCPTZs) in the standard state are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G^** level, and their octanol-water partition coefficients (logKow) are calculated based on group contributions. The chlorine substitution pattern strongly influenced the thermodynamic properties and hydrophilicity of the compounds. The thermodynamic properties of congeners also depend on the chlorine substitution pattern. The effect of chlorine substitution pattern is quantitatively studied by considering the mmaber and position of Cl atom substitution (Npcs). The results show that the Npcs model may be used to predict the thermodynamic properties and hydrophilicity for all 135 PCPTZ congeners.展开更多
With the B3LYP calculation method of density functional theory(DFT)and the 6-31G* basis set,full optimization calculation was made for phenoxathiin10-oxide(PTO)and 135 polybromine phenoxathiin 10-oxides(PBPTOs)...With the B3LYP calculation method of density functional theory(DFT)and the 6-31G* basis set,full optimization calculation was made for phenoxathiin10-oxide(PTO)and 135 polybromine phenoxathiin 10-oxides(PBPTOs)with the Gaussian 03 program and molar heat capacity in constant volume(CVθ)value of each molecule in the standard state was obtained.The relation between CVθ and the substitution position and number of bromine atom(NPBS)was studied,and the results indicated good correlation(R2 = 1.000)between CVθ and NPBS of PBPTO compounds.Based on the output file of Gaussian 03 program,molar heat capacity at constant pressure(Cp,m)of PBPTO compounds from 200 to 1,000 K was calculated with the statistical thermodynamics program,and the correlation equation between Cp,m and temperature(T,T-1 and T-2)was obtained with the least-squares method,and the correlation coefficient of the correlation equation(R2)was 1.000.In addition,based on the partition function of each molecule calculated by vibration analysis,the relative rate constant of formation of each molecule was calculated.展开更多
A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/...A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/℃and 0.465%/℃in the te mperature range from 25 to 100℃,which are much lower than those of commercial Nd-Fe-B magnet.An enhanced Curie temperature is obtained for the novel magnet due to the Co substitution,which significantly improves the operating temperature.The microstructure result reveals that an amorphous phase exists in the intergranular grains which is probably responsible for the deterioration of intrinsic coercivity.This work can provide a reference for the design and optimization of components of sintered Nd-Fe-B magnets with excellent thermal stability.展开更多
Owing to the large exciton binding energy(>100 meV)of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic syst...Owing to the large exciton binding energy(>100 meV)of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic system.In this study,a series of chalcogen(S,Se)-substituted mesoporous covalent organic frameworks(COFs)have been synthesized for enhanced photocatalytic organic transformations.Photoelectrochemical measurements indicate that the introduction of semi-metallic Se atom and the enlargement of conjugation degree can not only reduce the exciton binding energy accelerating the charge separation,but also reduce the band gap of COFs.As a result,the COF-NUST-36 with the lowest exciton binding energy(39.5 meV)shows the highest photocatalytic performance for selective oxidation of amines(up to 98%Conv.and 97.5%Sel.).This work provides a feasible method for designing COFs with high photocatalytic activity by adjusting exciton binding energy.展开更多
Dynamically engineering the optical and electrical properties in two-dimensional(2D)materials is of great signifcance for designing the related functions and applications.The introduction of foreign-atoms has previous...Dynamically engineering the optical and electrical properties in two-dimensional(2D)materials is of great signifcance for designing the related functions and applications.The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials;however,this approach still remains to be explored in 2D materials.Here,we systematically demonstrate the growth of vanadium-doped molybdenum disulfde(V-doped MoS_(2))monolayers via an alkali metal-assisted chemical vapor deposition method.Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS_(2)monolayers.This was also confrmed by Raman and X-ray photoelectron spectroscopy.Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS_(2)monolayers(with low doping concentration).Most importantly,through temperature-dependent study,we observed efcient valley scattering of the B-exciton,greatly enhancing its emission intensity.Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS_(2),where a clear n-type behavior transited frst to ambipolar and then to lightly p-type charge carrier transport.In addition,visible to infrared wide-band photodetectors based on V-doped MoS_(2)monolayers(with low doping concentration)were demonstrated.The V-doped MoS_(2)monolayers with distinct B-exciton emission,enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and ofer novel materials for optoelectronic applications.展开更多
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金This work was supported by National Key R&D Program of China(2021YFF1200200)Peiyang Talents Project of Tianjin University.
文摘Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
基金973 National Basic Research Program of China (2003CB415002)
文摘20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.
基金Supported by the National Natural Science Foundation of China (20737001).
文摘The thermodynamic properties of 135 polybrominated dibenzothiophenes (PBDTs) in the gaseous state at 298.15 K and 1.013×10^5 Pa, are calculated using the density functional theory (the B3LYP/6-311G^**) with Gaussian 03. Based on these data, the isodesmic reacflons are designed to calculate the standard enthalpy of formation (△fH^θ) and the standard Gibbs energy of formation (△fG^θ) of PBDTs. The relations of these thermodynamic parameters with the number and positionof bromine subsfituents (NPBS) are discussed, and it is found that there exist good correlations between othermody namic parameters (including heat capacity at constant volume, entropy, enthaipy, free energy, △fH^θ, △fG^θ) and NPBS. Thoe relative stability order of PBDT congeners is proposed theoretically based on the relative magnitude of their △fG^θ. In addition, the values of molar heat capacities at constant pressure (Cp,m) for PBDT c ongelaers are calculated.
基金This work was supported by National Natural Science Foundation of China(21825103,11774044,52072059)the Hubei Provincial Natural Science Foundation of China(2019CFA002)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXMBZ018 and 2020kfyXJJS050)We also thank the technical support from Analytical and Testing Center in Huazhong University of Science and Technology.
文摘Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.
基金Supported by the NNSFC (20737001, 20977046)NSF of Zhejiang Province (2008Y507280)
文摘The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.
基金Supported by the National Natural Science Foundation of China (20977046, 20737001).
文摘The gas phase thermodynamic properties of 135 polychlorinated xanthones(PCXTs)are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G**level.It is found that the chlorine substitution pattern strongly influences the thermodynamic properties of the compounds.The thermodynamic properties of congeners with the same number of chlorines also depend on the chlorine substitution pattern,especially for ortho-substituted congeners.PCXT congeners with one phenyl ring fully chlorinated are found to be the least stable among the analogues.The effect of the chlorine substitution pattern is quantitatively studied by considering the number and position of Cl atom substitution(NPCS).The results show that the NPCS model may be used to predict the thermodynamic properties for all 135 PCXT congeners. In addition,the values of molar heat capacities at constant pressure(cp,m)from 200 to 1000 K for PCXT congeners are calculated,and the temperature dependence relation of this parameter is obtained using the least-squares method.
基金the National Natural Science Foundation of China(No.20737001 and 20477018)
文摘The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.
文摘The thermodynamic properties of 135 polychlorinated phenothiazines (PCPTZs) in the standard state are calculated using a combination of quantum mechanical computations performed with the Gaussian 03 program at the B3LYP/6-311G^** level, and their octanol-water partition coefficients (logKow) are calculated based on group contributions. The chlorine substitution pattern strongly influenced the thermodynamic properties and hydrophilicity of the compounds. The thermodynamic properties of congeners also depend on the chlorine substitution pattern. The effect of chlorine substitution pattern is quantitatively studied by considering the mmaber and position of Cl atom substitution (Npcs). The results show that the Npcs model may be used to predict the thermodynamic properties and hydrophilicity for all 135 PCPTZ congeners.
基金supported by the National Natural Science Foundation of China (41071319,20977046 and 20737001)
文摘With the B3LYP calculation method of density functional theory(DFT)and the 6-31G* basis set,full optimization calculation was made for phenoxathiin10-oxide(PTO)and 135 polybromine phenoxathiin 10-oxides(PBPTOs)with the Gaussian 03 program and molar heat capacity in constant volume(CVθ)value of each molecule in the standard state was obtained.The relation between CVθ and the substitution position and number of bromine atom(NPBS)was studied,and the results indicated good correlation(R2 = 1.000)between CVθ and NPBS of PBPTO compounds.Based on the output file of Gaussian 03 program,molar heat capacity at constant pressure(Cp,m)of PBPTO compounds from 200 to 1,000 K was calculated with the statistical thermodynamics program,and the correlation equation between Cp,m and temperature(T,T-1 and T-2)was obtained with the least-squares method,and the correlation coefficient of the correlation equation(R2)was 1.000.In addition,based on the partition function of each molecule calculated by vibration analysis,the relative rate constant of formation of each molecule was calculated.
基金Project supported by the National Key Research and Development Program(2021YFB3502801,2021YFB3502803)the National Natural Science Foundation of China(52001067)。
文摘A novel Nd-Fe-B type permanent magnet with excellent thermal stability was designed by Co replacing Fe in the main phase and the grain boundary phase.The remanence and coercivity temperature coefficient reach 0.058%/℃and 0.465%/℃in the te mperature range from 25 to 100℃,which are much lower than those of commercial Nd-Fe-B magnet.An enhanced Curie temperature is obtained for the novel magnet due to the Co substitution,which significantly improves the operating temperature.The microstructure result reveals that an amorphous phase exists in the intergranular grains which is probably responsible for the deterioration of intrinsic coercivity.This work can provide a reference for the design and optimization of components of sintered Nd-Fe-B magnets with excellent thermal stability.
基金financially supported by the National Natural Science Foundation of China(No.22171136)the Natural Science Foundation of Jiangsu Province(Nos.BK20220928,BK20220079)+4 种基金the Fundamental Research Funds for the Central Universities(Nos.30921011102,30922010902)the Medical Innovation and Development Project of Lanzhou University(No.lzuyxcx-2022-156)CAMS Innovation Fund for Medical Sciences(CIFMS,Nos.2019-I2M-5-074,2021-I2M-1-026,2021-I2M-3-001)the Startup Funding from Nanjing University of Science and Technology(Nos.AE89990,AE89991/376)G.Zhang acknowledges the support of the Thousand Young Talent Plan.
文摘Owing to the large exciton binding energy(>100 meV)of most organic materials,the process of exciton dissociation into free electrons and holes is seriously hindered,which plays a key role in the photocatalytic system.In this study,a series of chalcogen(S,Se)-substituted mesoporous covalent organic frameworks(COFs)have been synthesized for enhanced photocatalytic organic transformations.Photoelectrochemical measurements indicate that the introduction of semi-metallic Se atom and the enlargement of conjugation degree can not only reduce the exciton binding energy accelerating the charge separation,but also reduce the band gap of COFs.As a result,the COF-NUST-36 with the lowest exciton binding energy(39.5 meV)shows the highest photocatalytic performance for selective oxidation of amines(up to 98%Conv.and 97.5%Sel.).This work provides a feasible method for designing COFs with high photocatalytic activity by adjusting exciton binding energy.
基金supported by the National Key R&D Program of China(No.2022YFA1204300)the National Natural Science Foundation of China(Grant Nos.62104066,52372146,U22A20138,52221001 and 62090035)+2 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2020WNLOKF016)the Science and Technology Innovation Program of Hunan Province(Nos.2021RC3061 and 2020RC2028)the National Postdoctoral Program for Innovative Talents(No.BX2021094).
文摘Dynamically engineering the optical and electrical properties in two-dimensional(2D)materials is of great signifcance for designing the related functions and applications.The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials;however,this approach still remains to be explored in 2D materials.Here,we systematically demonstrate the growth of vanadium-doped molybdenum disulfde(V-doped MoS_(2))monolayers via an alkali metal-assisted chemical vapor deposition method.Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS_(2)monolayers.This was also confrmed by Raman and X-ray photoelectron spectroscopy.Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS_(2)monolayers(with low doping concentration).Most importantly,through temperature-dependent study,we observed efcient valley scattering of the B-exciton,greatly enhancing its emission intensity.Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS_(2),where a clear n-type behavior transited frst to ambipolar and then to lightly p-type charge carrier transport.In addition,visible to infrared wide-band photodetectors based on V-doped MoS_(2)monolayers(with low doping concentration)were demonstrated.The V-doped MoS_(2)monolayers with distinct B-exciton emission,enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and ofer novel materials for optoelectronic applications.