期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of substrate amendment on alkaline minerals and aggregate stability in bauxite residue 被引量:13
1
作者 TIAN Tao KE Wen-shun +4 位作者 ZHU Feng WANG Qiong-li YE Yu-zhen GUO Ying XUE Sheng-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期393-403,共11页
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain... Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas. 展开更多
关键词 bauxite residue substrate amendment alkaline minerals aggregate stability soil formation in bauxite residue
下载PDF
<i>Tithonia diversifolia</i>Leaves and Stems Use as Substrate Amendment Promote the Growth of Plantain Vivoplants in the Nursery
2
作者 C. A. Ewané N. T. Mbanya T. Boudjeko 《Agricultural Sciences》 2020年第9期849-859,共11页
<em>Tithonia diversifolia</em> is a year-round weed that decomposes rapidly after application as a soil amendment and it is more and more used in agriculture due to its numerous properties. The use of <... <em>Tithonia diversifolia</em> is a year-round weed that decomposes rapidly after application as a soil amendment and it is more and more used in agriculture due to its numerous properties. The use of <em>Tithonia diversifolia</em> in the production of plantain vivoplants is a great opportunity for small holders’ farmers that cannot easily buy chemical inputs for yield improvement. All plant parts are used because of their richness in nutrients, mineral elements and phytochemicals without knowing which part is the most efficient. <em>Tithonia diversifolia</em> used as substrate amendment for plantain vivoplants production in nursery could promote their growth. This study aims to evaluate the effect of <em>T. diversifolia</em> leaves and stems as substrate amendment on plantain vivoplants growth promotion. The vivoplants were produced in substrates amended with <em>T. diversifolia</em> leaves, stems, combination of leaves and stems, and control without amendment. The vegetative growth parameters (number of shoots, height and diameter of shoots, area of shoots leaves) were assessed in sterilized substrate and unsterilized substrate conditions. <em>T. diversifolia</em> leaves and stems treatment increases the number of shoots, the height and the diameter of shoots as well as the area of shoots leaves compared to the control. <em>T. diversifolia</em> stems are the more efficient treatment, followed by the combination of <em>T. diversifolia</em> leaves and stems and finally the <em>T. diversifolia</em> leaves. They act as a biofertilizer promoting thus, the growth of plantain vivoplants in the nursery. All parts of <em>Tithonia diversifolia</em> can therefore be used by poor small holder farmers, as green manure for soil amendment in a green agriculture context. 展开更多
关键词 Plantain Vivoplants Tithonia diversifolia substrate amendment Growth Promotion BIOFERTILIZER
下载PDF
Rehabilitation of bauxite residue to support soil development and grassland establishment 被引量:7
3
作者 XUE Sheng-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期353-360,共8页
Rehabilitation(amendment and vegetation establishment)on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development.However,such approaches are inhibited by high pH,high e... Rehabilitation(amendment and vegetation establishment)on bauxite residue is viewed as a promising strategy to stabilize the surface and initiate soil development.However,such approaches are inhibited by high pH,high exchangeable sodium(ESP)and poor nutrient status.Amendment with gypsum is effective in improving residue physical and chemical properties and promoting seed establishment and growth.Application of organics(e.g.compost)can address nutrient deficiencies but supplemental fertilizer additions may be required.A series of germination bioassays were performed on residue to determine candidate species and optimum rehabilitation application rates.Subsequent field trials assessed establishment of grassland species Holcus lanatus and Trifolium pratense as well as physical and chemical properties of amended residue.Follow up monitoring over five years assessed elemental content in grassland and species dynamics.With co-application of the amendments several grassland species can grow on the residue.Over time other plant species can invade the restored area and fast growing nutrient demanding grasses are replaced.Scrub species can establish within a 5 Yr period and there is evidence of nutrient cycling.High pH,sodicity and nutrient deficiencies are the major limiting factors to establishing grassland on residue.Following restoration several plant species can grow on amended residue. 展开更多
关键词 bauxite residue substrate amendment soil development soil formation in bauxite residue vegetation establishment
下载PDF
Natural ripening with subsequent additions of gypsum and organic matter is key to successful bauxite residue revegetation 被引量:4
4
作者 ZHOU Ya-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第2期289-303,共15页
The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the p... The processes involved in the major steps of successful revegetation of bauxite residues are examined.The first phase is the natural physical,chemical and microbial ripening of the profile.This involves allowing the profile to drain,dry,shrink and crack to depth,leaching of soluble salts,alkalinity and Na down out of the surface layers,acidification by direct carbonation and natural seeding of tolerant vegetation with an accumulation of organic matter near the surface and an attendant development of an active microbial community.Following ripening,the surface layer can be tilled and gypsum and organic matter(e.g.manures,composts,biosolids)incorporated.These amendments result in a further decrease in pH,increase in Ca and other exchangeable cations,increased leaching of Na(with a reduction in exchangeable Na and ESP),improved physical properties,particularly aggregation,and a large increase in microbial activity.Other important considerations include the choice of suitable plant species tolerant to salinity/sodicity and local environmental conditions and the addition of balanced fertilizer applications. 展开更多
关键词 bauxite residue bauxite residue disposal area substrate amendment natural ripening soil formation in bauxite residue
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部