Two substrate integrated waveguide(SIW) cavity antenna arrays based on metasurface are proposed in this paper. By rotating the metasurface element, circularly polarized and high gain antennas are achieved respectively...Two substrate integrated waveguide(SIW) cavity antenna arrays based on metasurface are proposed in this paper. By rotating the metasurface element, circularly polarized and high gain antennas are achieved respectively. Firstly, multi-mode resonance theory is employed to broaden the bandwidth of the slot antenna. And then, an SIW cavity composed of 4×4 cornercut elements is added on the top of the slot antenna to achieve the circular polarization and improve the front-to-back ratio. Thirdly, the metasurface elements are sequentially rotated and a high gain antenna with 2-dBi enhancement on average in the operation band is obtained. Based on the two antenna units, two 2×2 antenna arrays are designed. The circularly polarized and high gain antenna arrays are both fabricated to verify the correctness. Furthermore, the novel wideband phase shifter is employed in the circularly polarized antenna to obtain an operating bandwidth of 38%(4.05 GHz–5.95 GHz)and AR bandwidth of 24.9%(4.4 GHz–5.65 GHz). The bandwidth of the high gain antenna can reach 42.7%(3.95 GHz–6.1 GHz) and with the gain enhancement of 2 dBi compared with that of the circularly polarized antenna. The gain remains steady in most of operating band within a variation of 1 dBi. It is remarkable that the rotating of the metasurface element has a great influence on the antenna performance, which provides a new explication for the multi-function antenna design.展开更多
A frequency selective polarization rotator that can rotate the polarization angle of an incident electromagnetic wave at the microwave frequency by 45 is presented. The polarization rotator is based on a two-dimension...A frequency selective polarization rotator that can rotate the polarization angle of an incident electromagnetic wave at the microwave frequency by 45 is presented. The polarization rotator is based on a two-dimensional periodic array of substrate integrated waveguide cavities, realizing the polarization rotation by coupling the input signal to the output wave through three metallic slots. Two layers of frequency selective surfaces are cascaded by substrate and form the polarization rotator. A vertical slot on the top layer is used to select the horizontal polarization from the incident wave, the vertical and the horizontal slots on the bottom layer are, respectively, used to obtain horizontally and vertically polarized outgoing waves. The two orthogonal outgoing waves are combined to result in the 45~ polarized wave. Both full wave simulation and experimental measurement are carried out, together validating the proposed method.展开更多
Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide ...Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide a high amplitude and phase balance over wide frequency band and no phase delay technique is required for the difference channel. Resonant slot antennas are adopted as the radiating elements since they can be integrated with the sum-difference monopulse comparator in a single layer with a compact size. Two monopulse arrays with 2× 4 and 4×4 slot elements are designed, fabricated, and measured. Measured results show that the proposed antenna arrays have wide bandwidth covering the unlicensed 60-GHz band. The peak sum beam gain is 13.85 dBi for the 2 ×4 element array and 16.24 dBi for the 4×4 element array. The peak difference beam gain is 11.20 dBi for the 2×4 element array and 12.11 dBi for the 4×4 element array and the maximum null depth can reach -40 dB.展开更多
Three dual-mode band-pass filters are presented in the present paper. The first filter is realized by dual-mode substrate integrated waveguide (SIW) cavity;the second is based on the integration of SIW cavity with ele...Three dual-mode band-pass filters are presented in the present paper. The first filter is realized by dual-mode substrate integrated waveguide (SIW) cavity;the second is based on the integration of SIW cavity with electromagnetic band gap (EBG);and the third is based on the integration of SIW cavity with complementary split ring resonator (CSRR). The dual-mode SIW cavity is designed to have a fractional bandwidth of 4.95% at the midband frequency of 9.08 GHz;the proposed EBG-SIW resonator operates at 9.12 GHz with a bandwidth of 4.38% and the CSRR-SIW resonator operates at 8.66 GHz with a bandwidth of 2.54%. The proposed filters have the high Q-factors and generate a transmission zero in upper stopband, and these by the use of Rogers RT/duriod 5880 (tm).展开更多
在设计汽车雷达系统天线时,为实现其K波段天线圆极化特性,提出了在基片集成波导顶层开交叉缝隙的结构,并采用金属柱加扰的方法展宽了天线的工作频带。使用三维电磁仿真软件HFSS在罗杰斯介质板Rogers 5880上进行设计优化,得到4个交叉缝...在设计汽车雷达系统天线时,为实现其K波段天线圆极化特性,提出了在基片集成波导顶层开交叉缝隙的结构,并采用金属柱加扰的方法展宽了天线的工作频带。使用三维电磁仿真软件HFSS在罗杰斯介质板Rogers 5880上进行设计优化,得到4个交叉缝隙阵元的圆极化SIW缝隙天线。仿真结果显示:其轴比小于3 d B的带宽为370 MHz,在24.15 GHz频点上天线增益为8.6 d Bi,在24.00~24.25 GHz频率范围内,电压驻波比小于1.5。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.61871394)。
文摘Two substrate integrated waveguide(SIW) cavity antenna arrays based on metasurface are proposed in this paper. By rotating the metasurface element, circularly polarized and high gain antennas are achieved respectively. Firstly, multi-mode resonance theory is employed to broaden the bandwidth of the slot antenna. And then, an SIW cavity composed of 4×4 cornercut elements is added on the top of the slot antenna to achieve the circular polarization and improve the front-to-back ratio. Thirdly, the metasurface elements are sequentially rotated and a high gain antenna with 2-dBi enhancement on average in the operation band is obtained. Based on the two antenna units, two 2×2 antenna arrays are designed. The circularly polarized and high gain antenna arrays are both fabricated to verify the correctness. Furthermore, the novel wideband phase shifter is employed in the circularly polarized antenna to obtain an operating bandwidth of 38%(4.05 GHz–5.95 GHz)and AR bandwidth of 24.9%(4.4 GHz–5.65 GHz). The bandwidth of the high gain antenna can reach 42.7%(3.95 GHz–6.1 GHz) and with the gain enhancement of 2 dBi compared with that of the circularly polarized antenna. The gain remains steady in most of operating band within a variation of 1 dBi. It is remarkable that the rotating of the metasurface element has a great influence on the antenna performance, which provides a new explication for the multi-function antenna design.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60990322,60990320,60801001,and 61101011)the Key Grant Project of Ministry of Education of China(Grant No.313029)+1 种基金the Ph.D.Program Foundation of Ministry of Education of China(Grant Nos.20100091110036 and 20120091110032)the Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves,China
文摘A frequency selective polarization rotator that can rotate the polarization angle of an incident electromagnetic wave at the microwave frequency by 45 is presented. The polarization rotator is based on a two-dimensional periodic array of substrate integrated waveguide cavities, realizing the polarization rotation by coupling the input signal to the output wave through three metallic slots. Two layers of frequency selective surfaces are cascaded by substrate and form the polarization rotator. A vertical slot on the top layer is used to select the horizontal polarization from the incident wave, the vertical and the horizontal slots on the bottom layer are, respectively, used to obtain horizontally and vertically polarized outgoing waves. The two orthogonal outgoing waves are combined to result in the 45~ polarized wave. Both full wave simulation and experimental measurement are carried out, together validating the proposed method.
基金This project is supported by the National Basic Research Program of China ("973" Program) under Grant No. 2014CB339900 and the National Natural Science Foundation of China under Grant No. 61372056.
文摘Monopulse slot antenna arrays based on substrate integrated waveguide (SIW) are proposed for the application of 60 GHz mono- pulse tracking systems in this paper. The sum-difference monopulse comparator can provide a high amplitude and phase balance over wide frequency band and no phase delay technique is required for the difference channel. Resonant slot antennas are adopted as the radiating elements since they can be integrated with the sum-difference monopulse comparator in a single layer with a compact size. Two monopulse arrays with 2× 4 and 4×4 slot elements are designed, fabricated, and measured. Measured results show that the proposed antenna arrays have wide bandwidth covering the unlicensed 60-GHz band. The peak sum beam gain is 13.85 dBi for the 2 ×4 element array and 16.24 dBi for the 4×4 element array. The peak difference beam gain is 11.20 dBi for the 2×4 element array and 12.11 dBi for the 4×4 element array and the maximum null depth can reach -40 dB.
文摘Three dual-mode band-pass filters are presented in the present paper. The first filter is realized by dual-mode substrate integrated waveguide (SIW) cavity;the second is based on the integration of SIW cavity with electromagnetic band gap (EBG);and the third is based on the integration of SIW cavity with complementary split ring resonator (CSRR). The dual-mode SIW cavity is designed to have a fractional bandwidth of 4.95% at the midband frequency of 9.08 GHz;the proposed EBG-SIW resonator operates at 9.12 GHz with a bandwidth of 4.38% and the CSRR-SIW resonator operates at 8.66 GHz with a bandwidth of 2.54%. The proposed filters have the high Q-factors and generate a transmission zero in upper stopband, and these by the use of Rogers RT/duriod 5880 (tm).
文摘在设计汽车雷达系统天线时,为实现其K波段天线圆极化特性,提出了在基片集成波导顶层开交叉缝隙的结构,并采用金属柱加扰的方法展宽了天线的工作频带。使用三维电磁仿真软件HFSS在罗杰斯介质板Rogers 5880上进行设计优化,得到4个交叉缝隙阵元的圆极化SIW缝隙天线。仿真结果显示:其轴比小于3 d B的带宽为370 MHz,在24.15 GHz频点上天线增益为8.6 d Bi,在24.00~24.25 GHz频率范围内,电压驻波比小于1.5。