Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were in...Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.展开更多
Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties an...Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.展开更多
To study the 25Mg(p,y)^26 Al reaction at the Jinping Underground Nuclear Astrophysics laboratory,a large-area 25Mg target with a uniform thickness is needed.A rotating unit is used to ensure the uniformity of the targ...To study the 25Mg(p,y)^26 Al reaction at the Jinping Underground Nuclear Astrophysics laboratory,a large-area 25Mg target with a uniform thickness is needed.A rotating unit is used to ensure the uniformity of the target thickness during evaporation.After many attempts,19 targets with diameters of 40 mm and a non-uniformity of8.4%were prepared simultaneously.The rate of material utilization was approximately 4.7 times higher than that obtained using a conventional evaporation method.展开更多
We present a study on n-type ternary InGaN layers grown by atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) on GaN template/(0001) sapphire substrate. An investigation of the different growth conditi...We present a study on n-type ternary InGaN layers grown by atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) on GaN template/(0001) sapphire substrate. An investigation of the different growth conditions on n-type InxGa1-xN (x = 0.06 -- 0.135) alloys was done for a series of five samples. The structural, electrical and optical properties were characterized by high resolution x-ray diffraction (HRXRD), Hall effect and photolumineseence (PL). Experimental results showed that different growth conditions, namely substrate rotation (SR) and change of total H2 flow (THF), strongly affect the properties of InGaN layers. This case can be clearly observed from the analytical results. When the SR speed decreased, the HRXRD scan peak of the samples shifted along a higher angle. Therefore, increasing the SR speed changed important structural properties of InGaN alloys such as peak broadening, values of strain, lattice parameters and defects including tilt, twist and dislocation density. From PL results it is observed that the growth conditions can be changed to control the emission wavelength and it is possible to shift the emission wavelength towards the green. Hall effect measurement has shown that the resistivity of the samples changes dramatically when THF changes.展开更多
A highly c-axis-oriented aluminum nitride(Al N)thin film with smooth and crack-free surface was fabricated by an off-normal direct current(DC)sputtering method in a pure nitrogen atmosphere,in which the rotatable subs...A highly c-axis-oriented aluminum nitride(Al N)thin film with smooth and crack-free surface was fabricated by an off-normal direct current(DC)sputtering method in a pure nitrogen atmosphere,in which the rotatable substrate holder positioned in the middle of four side targets was a key approach to guarantee the grain growth with no tilt.The detailed effects of substrate angle on the c-axis orientation of Al N films were investigated by varying the substrate angle from 0°to 90°.Moreover,theoretical analysis and Monte Carlo(MC)simulation reveal that the oblique or even vertical angle could improve the lateral kinetic energy of sputtered atoms deposited on the growing film.A variety of examining techniques including X-ray diffraction(XRD),(002)peak rocking curve,scanning electron microscopy(SEM)were conducted to evaluate the angle dependence on the crystallographic orientation.These test results indicate that larger substrate angle is beneficial to the(002)growth of Al N thin film,and a fully c-axis textured Al N thin film is obtained at 90°with small surface roughness(R_(a))of 3.32 nm.展开更多
文摘Al-doped ZnO(AZO)thin films were deposited on glass substrates by rf-sputtering at room temperature.The effects of substrate rotation speed(ωS)on the morphological,structural,optical and electrical properties were investigated.SEM transversal images show that the substrate rotation produces dense columnar structures which were found to be better defined under substrate rotation.AFM images show that the surface particles of the samples formed under substrate rotation are smaller and denser than those of a stationary one,leading to smaller grain sizes.XRD results show that all films have hexagonal wurtzite structure and preferred c-axis orientation with a tensile stress along the c-axis.The average optical transmittance was above90%in UV-Vis region.The lowest resistivity value(8.5×10?3Ω·cm)was achieved atωS=0r/min,with a carrier concentration of1.8×1020cm?3,and a Hall mobility of4.19cm2/(V·s).For all other samples,the substrate rotation induced changes in the carrier concentration and Hall mobility which resulted in the increasing of electrical resistivity.These results indicate that the morphology,structure,optical and electrical properties of the AZO thin films are strongly affected by the substrate rotation speed.
基金Project(51302044)supported by the National Natural Science Foundation of ChinaProject(2012M521596)supported by the Chinese Postdoctoral Science FoundationProject(KLB11003)supported by the Key Laboratory of Clean Energy Materials of Guangdong Higher Education Institute,China
文摘Al-doped zinc oxide(AZO) films were deposited on glass substrates by mid-frequency magnetron sputtering. The effects of substrate rotation speed and target-substrate distance on the electrical, optical properties and microstructure and crystal structures of the resulting films were investigated by scanning electron microscopy(SEM), atomic force microscopy(AFM), X-ray diffraction(XRD), spectrophotometer and Hall-effect measurement system, respectively. XRD results show that all AZO films exhibit a strong preferred c-axis orientation. However, the crystallinity of films decreases with the increase of substrate rotation speed, accompanying with the unbalanced grains grows. For the films prepared at different target-substrate distances, the uniform microstructure and morphology are observed. The highest carrier concentration of 5.9×1020 cm-3 and Hall mobility of 13.1 cm^2/(V·s) are obtained at substrate rotation speed of 0 and target-substrate distance of 7 cm. The results indicate that the structure and performances of the AZO films are strongly affected by substrate rotation speed.
基金supported by the National Natural Science Foundation of China(Nos.11490563,11575292 and 11205247)the National Key Research and Development Project(No.2016YFA0400502)Continuous Basic Scientific Research Project(No.WDJC-2019-13)。
文摘To study the 25Mg(p,y)^26 Al reaction at the Jinping Underground Nuclear Astrophysics laboratory,a large-area 25Mg target with a uniform thickness is needed.A rotating unit is used to ensure the uniformity of the target thickness during evaporation.After many attempts,19 targets with diameters of 40 mm and a non-uniformity of8.4%were prepared simultaneously.The rate of material utilization was approximately 4.7 times higher than that obtained using a conventional evaporation method.
基金supported by the State Planning Organization of Turkey (Grant No 2001K120590)
文摘We present a study on n-type ternary InGaN layers grown by atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) on GaN template/(0001) sapphire substrate. An investigation of the different growth conditions on n-type InxGa1-xN (x = 0.06 -- 0.135) alloys was done for a series of five samples. The structural, electrical and optical properties were characterized by high resolution x-ray diffraction (HRXRD), Hall effect and photolumineseence (PL). Experimental results showed that different growth conditions, namely substrate rotation (SR) and change of total H2 flow (THF), strongly affect the properties of InGaN layers. This case can be clearly observed from the analytical results. When the SR speed decreased, the HRXRD scan peak of the samples shifted along a higher angle. Therefore, increasing the SR speed changed important structural properties of InGaN alloys such as peak broadening, values of strain, lattice parameters and defects including tilt, twist and dislocation density. From PL results it is observed that the growth conditions can be changed to control the emission wavelength and it is possible to shift the emission wavelength towards the green. Hall effect measurement has shown that the resistivity of the samples changes dramatically when THF changes.
基金financially supported by the National Natural Science Foundation of China(Nos.U1832131 and51721005)Beijing Municipal Natural Science Foundation(No.3202034)the Natural Science Foundation of Hebei Province(No.E2018402097)。
文摘A highly c-axis-oriented aluminum nitride(Al N)thin film with smooth and crack-free surface was fabricated by an off-normal direct current(DC)sputtering method in a pure nitrogen atmosphere,in which the rotatable substrate holder positioned in the middle of four side targets was a key approach to guarantee the grain growth with no tilt.The detailed effects of substrate angle on the c-axis orientation of Al N films were investigated by varying the substrate angle from 0°to 90°.Moreover,theoretical analysis and Monte Carlo(MC)simulation reveal that the oblique or even vertical angle could improve the lateral kinetic energy of sputtered atoms deposited on the growing film.A variety of examining techniques including X-ray diffraction(XRD),(002)peak rocking curve,scanning electron microscopy(SEM)were conducted to evaluate the angle dependence on the crystallographic orientation.These test results indicate that larger substrate angle is beneficial to the(002)growth of Al N thin film,and a fully c-axis textured Al N thin film is obtained at 90°with small surface roughness(R_(a))of 3.32 nm.