Superconducting thin films of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>(Y-Ba-Cu-O) with Tc more than 85K have been deposited in situ by metalorganic chemical vapor deposition ...Superconducting thin films of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>(Y-Ba-Cu-O) with Tc more than 85K have been deposited in situ by metalorganic chemical vapor deposition (MOCVD) on yttria stabilized zirconia(YSZ) substrates. The relationship of film orientation on substrate temperature and the lowest formation temperature region of superconducting phase have been obtained after changing the substrate temperature. The epitaxial relation between Y-Ba-Cu-O films and the YSZ su bstrates were discussed.展开更多
It has been proved that there exists a certain cor relation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of hu man hand is presented to investigate how the...It has been proved that there exists a certain cor relation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of hu man hand is presented to investigate how the blood flow os cillation in the endothelial frequency band influences finger tip skin temperature oscillations. The porosity which repre sents the density of micro vessels is assumed to vary periodi cally and is a function of the skin temperature. Finite element analysis of skin temperature for a contra lateral hand under a cooling test was conducted. Subsequently, wavelet anal ysis was carried out to extract the temperature oscillations of the data through the numerical analysis and experimen tal measurements. Furthermore, the oscillations extracted from both numerical analyses and experiments were statis tically analyzed to compare the amplitude. The simulation and experimental results show that for the subjects in cardio vascular health, the skin temperature fluctuations in endothe lial frequency decrease during the cooling test and increase gradually after cooling, implying that the assumed porosity variation can represent the vasomotion in the endothelial fre quency band.展开更多
In this paper, a low pressure Ar/N2 shock plasma jet with clearly multicycle al- ternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion...In this paper, a low pressure Ar/N2 shock plasma jet with clearly multicycle al- ternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion analysis. Plasma emission intensity, electron, vi- brational and rotational temperatures of the shock plasma have been measured in the expansion and compression zones. The results indicate that the ranges of the measured electron temperature, vibrational temperature and rotational temperature are 1.1 eV to 1.6 eV, 0.2 eV to 0.7 eV and 0.19 eV to 0.22 eV, respectively, and it is found for the first time that the vibrational and rota- tional temperatures increase while the electron temperature decreases in the compression zones. The electron temperature departs from the vibrational and the rotational temperatures due to non-equilibrium plasma effects. Electrons and heavy particles could not completely exchange energy via collisions in the shock plasma jet under the low pressure of 620 Pa or so.展开更多
文摘Superconducting thin films of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>(Y-Ba-Cu-O) with Tc more than 85K have been deposited in situ by metalorganic chemical vapor deposition (MOCVD) on yttria stabilized zirconia(YSZ) substrates. The relationship of film orientation on substrate temperature and the lowest formation temperature region of superconducting phase have been obtained after changing the substrate temperature. The epitaxial relation between Y-Ba-Cu-O films and the YSZ su bstrates were discussed.
基金supported by Anhui Provincial Natural Science Foundation of China(11040606M09)
文摘It has been proved that there exists a certain cor relation between fingertip temperature oscillations and blood flow oscillations. In this work, a porous media model of hu man hand is presented to investigate how the blood flow os cillation in the endothelial frequency band influences finger tip skin temperature oscillations. The porosity which repre sents the density of micro vessels is assumed to vary periodi cally and is a function of the skin temperature. Finite element analysis of skin temperature for a contra lateral hand under a cooling test was conducted. Subsequently, wavelet anal ysis was carried out to extract the temperature oscillations of the data through the numerical analysis and experimen tal measurements. Furthermore, the oscillations extracted from both numerical analyses and experiments were statis tically analyzed to compare the amplitude. The simulation and experimental results show that for the subjects in cardio vascular health, the skin temperature fluctuations in endothe lial frequency decrease during the cooling test and increase gradually after cooling, implying that the assumed porosity variation can represent the vasomotion in the endothelial fre quency band.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2013GB109005,2009GB106004)National Natural Science Foundation of China(Nos.11175035,10875023)the Fundamental Research Funds for the Central Universities of China(DUT 12ZD(G)01,DUT 11ZD(G)06)
文摘In this paper, a low pressure Ar/N2 shock plasma jet with clearly multicycle al- ternating zones produced by a DC cascade arc discharge has been investigated by an emission spectral method combined with Abel inversion analysis. Plasma emission intensity, electron, vi- brational and rotational temperatures of the shock plasma have been measured in the expansion and compression zones. The results indicate that the ranges of the measured electron temperature, vibrational temperature and rotational temperature are 1.1 eV to 1.6 eV, 0.2 eV to 0.7 eV and 0.19 eV to 0.22 eV, respectively, and it is found for the first time that the vibrational and rota- tional temperatures increase while the electron temperature decreases in the compression zones. The electron temperature departs from the vibrational and the rotational temperatures due to non-equilibrium plasma effects. Electrons and heavy particles could not completely exchange energy via collisions in the shock plasma jet under the low pressure of 620 Pa or so.